

FACULTY OF MATHEMATICS AND PHYSICS
Charles University

Counting operators in Effective Field Theories

Jonáš Dujava

May 16, 2023

Effective Field Theory Action

An effective approximation to a given more fundamental theory (may not be actually known) can be obtained by
(2) constructing the most general effective action consistent with locality, Lorentz invariance and additional sym

Effective Field Theory Action

An effective approximation to a given more fundamental theory (may not be actually known) can be obtained by
(1) choosing a subset of particle fields $\left\{\Phi_{i}\right\}$,
(3) and finally determining
(n
the

Effective Field Theory Action

An effective approximation to a given more fundamental theory (may not be actually known) can be obtained by
(1) choosing a subset of particle fields $\left\{\Phi_{i}\right\}$,
(2) constructing the most general effective action consistent with locality, Lorentz invariance and additional symmetries,

$$
S_{\mathrm{eff}}\left[\left\{\Phi_{i}\right\}\right]=\int_{\mathcal{M}} d^{\mathrm{d}} x\left[\mathcal{L}_{\mathrm{kin}}+\sum_{j} \frac{c_{j}}{\Lambda^{\Delta_{j}-\mathrm{d}}} \mathcal{O}_{j}\right]
$$

Effective Field Theory Action

An effective approximation to a given more fundamental theory (may not be actually known) can be obtained by
(1) choosing a subset of particle fields $\left\{\Phi_{i}\right\}$,
(2) constructing the most general effective action consistent with locality, Lorentz invariance and additional symmetries,

$$
S_{\mathrm{eff}}\left[\left\{\Phi_{i}\right\}\right]=\int_{\mathcal{M}} d^{\mathrm{d}} x\left[\mathcal{L}_{\mathrm{kin}}+\sum_{j} \frac{c_{j}}{\Lambda^{\Delta_{j}-\mathrm{d}}} \mathcal{O}_{j}\right]
$$

(3) and finally determining (matching) the coefficients c_{j}.

Effective Field Theory Action

An effective approximation to a given more fundamental theory (may not be actually known) can be obtained by
(1) choosing a subset of particle fields $\left\{\Phi_{i}\right\}$,
(2) constructing the most general effective action consistent with locality, Lorentz invariance and additional symmetries,

$$
S_{\mathrm{eff}}\left[\left\{\Phi_{i}\right\}\right]=\int_{\mathcal{M}} d^{\mathrm{d}} x\left[\mathcal{L}_{\mathrm{kin}}+\sum_{j} \frac{c_{j}}{\Lambda^{\Delta_{j}-\mathrm{d}}} \mathcal{O}_{j}\right]
$$

(3) and finally determining (matching) the coefficients c_{j}.

- We can choose different sets of operators $\left\{\mathcal{O}_{j}\right\}$.

Relations Between Operators

Not all operators are independent.

Relations Between Operators

Not all operators are independent.

> Definition (Operator relations). Operators \mathcal{O}_{m} and \mathcal{O}_{n} are considered equivalent (denoted by $\mathcal{O}_{m} \sim \mathcal{O}_{n}$), if they satisfy:

Relations Between Operators

Not all operators are independent.
Definition (Operator relations). Operators \mathcal{O}_{m} and \mathcal{O}_{n} are considered equivalent (denoted by $\mathcal{O}_{m} \sim \mathcal{O}_{n}$), if they satisfy:
(a) Equations of motion - EOM

$$
\exists \mathcal{O}^{\prime}, \Phi_{j}: \quad \mathcal{O}_{m}=\mathcal{O}_{n}+\frac{\delta S_{\mathrm{kin}}}{\delta \Phi_{j}} \mathcal{O}^{\prime}
$$

Relations Between Operators

Not all operators are independent.
Definition (Operator relations). Operators \mathcal{O}_{m} and \mathcal{O}_{n} are considered equivalent (denoted by $\mathcal{O}_{m} \sim \mathcal{O}_{n}$), if they satisfy:
(a) Equations of motion - EOM

$$
\exists \mathcal{O}^{\prime}, \Phi_{j}: \quad \mathcal{O}_{m}=\mathcal{O}_{n}+\frac{\delta S_{\mathrm{kin}}}{\delta \Phi_{j}} \mathcal{O}^{\prime}
$$

(b) Integration by parts - IBP $\left(\int_{\mathcal{M}} \partial \cdot \mathcal{O}=\int_{\partial \mathcal{M}} \mathcal{O}=0\right)$

$$
\exists \mathcal{O}^{\prime}: \mathcal{O}_{m}=\mathcal{O}_{n}+\partial \cdot \mathcal{O}^{\prime}
$$

Relations Between Operators

Not all operators are independent.
Definition (Operator relations). Operators \mathcal{O}_{m} and \mathcal{O}_{n} are considered equivalent (denoted by $\mathcal{O}_{m} \sim \mathcal{O}_{n}$), if they satisfy:
(a) Equations of motion - EOM

$$
\exists \mathcal{O}^{\prime}, \Phi_{j}: \quad \mathcal{O}_{m}=\mathcal{O}_{n}+\frac{\delta S_{\mathrm{kin}}}{\delta \Phi_{j}} \mathcal{O}^{\prime}
$$

(b) Integration by parts - IBP $\left(\int_{\mathcal{M}} \partial \cdot \mathcal{O}=\int_{\partial \mathcal{M}} \mathcal{O}=0\right)$

$$
\exists \mathcal{O}^{\prime}: \mathcal{O}_{m}=\mathcal{O}_{n}+\partial \cdot \mathcal{O}^{\prime}
$$

(c) Gram determinant conditions - GDC

$$
\left.\exists \mathcal{O}^{\prime}\right|_{d}\left\{\begin{array}{l}
=0 \text { for } d=\operatorname{dim} \mathcal{M} \\
\neq 0 \text { for a general } d
\end{array}\right\}: \quad \mathcal{O}_{m}=\mathcal{O}_{n}+\mathcal{O}^{\prime} \mid
$$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).
$(\overrightarrow{\partial \Phi)(\partial} \Phi) \Phi$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overleftarrow{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).
$(\overparen{\partial \Phi)(\partial} \Phi) \Phi=\left(\overparen{\partial \Phi)} \partial\left(\frac{1}{2} \Phi^{2}\right)\right.$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).
$\left(\overparen{\partial \Phi)(\partial \Phi) \Phi}=\left(\overrightarrow{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\stackrel{\Gamma}{\partial}\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]\right.\right.$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).
$(\overparen{\partial \Phi)(\partial} \Phi) \Phi=\left(\overrightarrow{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\stackrel{\partial}{2}\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]-(\overrightarrow{\partial \partial} \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right.$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).
$(\overparen{\partial \Phi)(\partial} \Phi) \Phi=(\overparen{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\zeta\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}{\partial}}_{\sim 0 \text { by IBP }}-(\overparen{\partial} \partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).
$(\overrightarrow{\partial \Phi)(\partial \Phi) \Phi}=(\overrightarrow{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\zeta}{\partial}\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}_{\sim 0 \text { by IBP }}-\underbrace{(\partial \partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)}_{\sim 0 \text { by EOM }}$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overleftarrow{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).

$$
(\overparen{\partial \Phi)(\partial} \Phi) \Phi=(\widehat{\partial \Phi)}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\zeta}{\partial}\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}_{\sim 0 \text { by IBP }}-\underbrace{(\stackrel{\zeta}{\partial} \Phi)\left(\frac{1}{2} \Phi^{2}\right)}_{\sim 0 \text { by EOM }}
$$

Example (GDC). Consider $\mathrm{d}=2$.

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).

$$
(\overparen{\partial \Phi)(\partial \Phi}) \Phi=(\widehat{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\zeta}{\partial}\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}_{\sim 0 \text { by IBP }}-\underbrace{(\overrightarrow{\partial \partial} \Phi)\left(\frac{1}{2} \Phi^{2}\right)}_{\sim 0 \text { by EOM }}
$$

Example (GDC). Consider $\mathrm{d}=2$.
$0 \stackrel{!}{=} \partial^{[a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c]} \partial_{c} \Phi$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).

$$
(\widehat{\partial \Phi)(\partial \Phi) \Phi}=(\overparen{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\zeta}{\partial\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}}_{\sim 0 \text { by IBP }}-\underbrace{\left(\frac{\zeta}{\partial \partial} \Phi\right)\left(\frac{1}{2} \Phi^{2}\right)}_{\sim 0 \text { by EOM }}
$$

Example (GDC). Consider $\mathrm{d}=2$.

$$
\begin{aligned}
0 & \stackrel{!}{=} \partial^{[a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c]} \partial_{c} \Phi \\
& =\partial^{a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c} \partial_{c} \Phi
\end{aligned}
$$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).

$$
(\widehat{\partial \Phi)(\partial \Phi)} \Phi=(\overparen{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\zeta}{\partial\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}}_{\sim 0 \text { by IBP }}-\underbrace{\left(\frac{\hbar \partial}{\partial} \Phi\right)\left(\frac{1}{2} \Phi^{2}\right)}_{\sim 0 \text { by EOM }}
$$

Example (GDC). Consider $\mathrm{d}=2$.

$$
\begin{aligned}
0 & \stackrel{!}{=} \partial^{[a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c]} \partial_{c} \Phi \\
& =\partial^{a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c} \partial_{c} \Phi+\overbrace{\partial^{c} \partial_{a} \Phi \partial^{a} \partial_{b} \Phi \partial^{b} \partial_{c} \Phi+\partial^{b} \partial_{a} \Phi \partial^{c} \partial_{b} \Phi \partial^{a} \partial_{c} \Phi}^{2 \partial^{b} \partial_{a} \Phi \partial^{c} \partial_{b} \Phi \partial^{a} \partial_{c} \Phi}
\end{aligned}
$$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).

$$
(\widehat{\partial \Phi)(\partial \Phi) \Phi}=(\overrightarrow{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\partial}{\partial}\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}_{\sim 0 \text { by } \mathrm{IBP}}-\underbrace{(\overrightarrow{\partial \partial} \Phi)\left(\frac{1}{2} \Phi^{2}\right)}_{\sim 0 \text { by EOM }}
$$

Example (GDC). Consider $\mathrm{d}=2$.

$$
\begin{aligned}
0 \stackrel{!}{=} & \partial^{[a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c} \partial_{c} \Phi \\
= & \partial^{a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c} \partial_{c} \Phi+\partial^{c} \partial_{a} \Phi \partial^{a} \partial_{b} \Phi \partial^{b} \partial_{c} \Phi+\partial^{b} \partial_{a} \Phi \partial^{c} \partial_{b} \Phi \partial^{a} \partial_{c} \Phi \\
& \underbrace{-\partial^{b} \partial_{a} \Phi \partial^{a} \partial_{b} \Phi \partial^{c} \partial_{c} \Phi-\partial^{c} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{a} \partial_{c} \Phi-\partial^{a} \partial_{a} \Phi \partial^{c} \partial_{b} \Phi \partial^{b} \partial_{c} \Phi}_{-3 \partial_{a} \partial_{b} \Phi \partial^{a} \partial^{b} \Phi \partial^{c} \partial_{c} \Phi}
\end{aligned}
$$

Example - Single Scalar Field Φ

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Example (EOM and IBP).

$$
(\widehat{\partial \Phi)(\partial \Phi) \Phi}=(\overparen{\partial \Phi) \partial}\left(\frac{1}{2} \Phi^{2}\right)=\underbrace{\stackrel{\zeta}{\partial\left[(\partial \Phi)\left(\frac{1}{2} \Phi^{2}\right)\right]}}_{\sim 0 \text { by IBP }}-\underbrace{\left(\frac{\hbar \partial}{\partial} \Phi\right)\left(\frac{1}{2} \Phi^{2}\right)}_{\sim 0 \text { by EOM }}
$$

Example (GDC). Consider $\mathrm{d}=2$.

$$
\begin{aligned}
0 \stackrel{!}{=} & \partial^{[a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c]} \partial_{c} \Phi \\
= & \partial^{a} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{c} \partial_{c} \Phi+\partial^{c} \partial_{a} \Phi \partial^{a} \partial_{b} \Phi \partial^{b} \partial_{c} \Phi+\partial^{b} \partial_{a} \Phi \partial^{c} \partial_{b} \Phi \partial^{a} \partial_{c} \Phi \\
& \underbrace{-\partial^{b} \partial_{a} \Phi \partial^{a} \partial_{b} \Phi \partial^{c} \partial_{c} \Phi-\partial^{c} \partial_{a} \Phi \partial^{b} \partial_{b} \Phi \partial^{a} \partial_{c} \Phi-\partial^{a} \partial_{a} \Phi \partial^{c} \partial_{b} \Phi \partial^{b} \partial_{c} \Phi}_{-3 \partial_{a} \partial_{b} \Phi \partial^{a} \partial^{b} \Phi \partial^{c} \partial_{c} \Phi}
\end{aligned}
$$

The Operator Basis and the Hilbert Series

Definition (Operator basis). The operator basis \mathcal{B} of the EFT is a minimal set of operators leading to all possible physical phenomena in the realm of the EFT.

The Operator Basis and the Hilbert Series

Definition（Operator basis）．The operator basis \mathcal{B} of the EFT is a minimal set of operators leading to all possible physical phenomena in the realm of the EFT．

In general it is hard to construct \mathcal{B} ．An easier step is to at least count independent operators of different types．

The Operator Basis and the Hilbert Series

Definition (Operator basis). The operator basis \mathcal{B} of the EFT is a minimal set of operators leading to all possible physical phenomena in the realm of the EFT.

In general it is hard to construct \mathcal{B}. An easier step is to at least count independent operators of different types.

Definition (Hilbert series). The Hilbert series is a formal series

$$
H(\phi, \mathcal{D})=\sum_{r} \sum_{n=0}^{\infty} d_{r n} \phi^{r} \mathcal{D}^{n}
$$

where $d_{r n} \equiv d_{r_{1} \ldots r_{N} n} \in \mathbb{N}_{0}$ is the number of independent operators in the operator basis \mathcal{B} of the type $\partial^{n} \boldsymbol{\Phi}^{r}$.

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$.

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)\left(1+\partial \Phi_{i}+\left(\partial \Phi_{i}\right)^{2}+\ldots\right)
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\begin{gathered}
\prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)\left(1+\partial \Phi_{i}+\left(\partial \Phi_{i}\right)^{2}+\ldots\right) \times \\
\quad \times\left(1+\partial^{2} \Phi_{i}+\left(\partial^{2} \Phi_{i}\right)^{2}+\ldots\right)
\end{gathered}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\begin{aligned}
& \prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)\left(1+\partial \Phi_{i}+\left(\partial \Phi_{i}\right)^{2}+\ldots\right) \times \\
& \quad \times\left(1+\partial^{2} \Phi_{i}+\left(\partial^{2} \Phi_{i}\right)^{2}+\ldots\right)\left(1+\partial^{3} \Phi_{i}+\ldots\right) \cdots
\end{aligned}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\begin{aligned}
& \prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)\left(1+\partial \Phi_{i}+\left(\partial \Phi_{i}\right)^{2}+\ldots\right) \times \\
& \times\left(1+\partial^{2} \Phi_{i}+\left(\partial^{2} \Phi_{i}\right)^{2}+\ldots\right)\left(1+\partial^{3} \Phi_{i}+\ldots\right) \cdots \\
& =\prod_{i=1}^{N} \frac{1}{\left(1-\Phi_{i}\right)\left(1-\partial \Phi_{i}\right)\left(1-\partial^{2} \Phi_{i}\right) \cdots}=\prod_{n=0}
\end{aligned}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\begin{aligned}
& \prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)\left(1+\partial \Phi_{i}+\left(\partial \Phi_{i}\right)^{2}+\ldots\right) \times \\
& \times\left(1+\partial^{2} \Phi_{i}+\left(\partial^{2} \Phi_{i}\right)^{2}+\ldots\right)\left(1+\partial^{3} \Phi_{i}+\ldots\right) \cdots \\
& =\prod_{i=1}^{N} \frac{1}{\left(1-\Phi_{i}\right)\left(1-\partial \Phi_{i}\right)\left(1-\partial^{2} \Phi_{i}\right) \cdots}=\prod_{i=1}^{N} \prod_{n=0}^{\infty} \frac{1}{1-\partial^{n} \Phi_{i}}
\end{aligned}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\begin{aligned}
& \prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)\left(1+\partial \Phi_{i}+\left(\partial \Phi_{i}\right)^{2}+\ldots\right) \times \\
& \quad \times\left(1+\partial^{2} \Phi_{i}+\left(\partial^{2} \Phi_{i}\right)^{2}+\ldots\right)\left(1+\partial^{3} \Phi_{i}+\ldots\right) \cdots \\
& =\prod_{i=1}^{N} \frac{1}{\left(1-\Phi_{i}\right)\left(1-\partial \Phi_{i}\right)\left(1-\partial^{2} \Phi_{i}\right) \cdots}=\prod_{i=1}^{N} \prod_{n=0}^{\infty} \frac{1}{1-\partial^{n} \Phi_{i}}
\end{aligned}
$$

The corresponding free Hilbert series is obtained by substituting $\left(\Phi_{i}, \partial\right)$ for their corresponding labels $\left(\phi_{i}, \mathcal{D}\right)$,

$$
\prod_{i=1}^{N} \prod_{n=0}^{\infty} \frac{1}{1-\mathcal{D}^{n} \phi_{i}}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(1) No relations. Rather trivial, because the operator basis can be easily guessed. It is freely generated by the set $\left\{\partial^{n} \Phi_{i}\right\}$ with $i=1, \ldots, N$ and $n \in \mathbb{N}_{0}$. It is easy to see that every operator is obtained precisely once in the expansion of

$$
\begin{aligned}
& \prod_{i=1}^{N}\left(1+\Phi_{i}+\Phi_{i}^{2}+\ldots\right)\left(1+\partial \Phi_{i}+\left(\partial \Phi_{i}\right)^{2}+\ldots\right) \times \\
& \quad \times\left(1+\partial^{2} \Phi_{i}+\left(\partial^{2} \Phi_{i}\right)^{2}+\ldots\right)\left(1+\partial^{3} \Phi_{i}+\ldots\right) \cdots \\
& =\prod_{i=1}^{N} \frac{1}{\left(1-\Phi_{i}\right)\left(1-\partial \Phi_{i}\right)\left(1-\partial^{2} \Phi_{i}\right) \cdots}=\prod_{i=1}^{N} \prod_{n=0}^{\infty} \frac{1}{1-\partial^{n} \Phi_{i}}
\end{aligned}
$$

The corresponding free Hilbert series is obtained by substituting $\left(\Phi_{i}, \partial\right)$ for their corresponding labels $\left(\phi_{i}, \mathcal{D}\right)$,

$$
H_{N}^{\mathrm{free}}(\boldsymbol{\phi}, \mathcal{D})=\sum_{r} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{free}} \boldsymbol{\phi}^{r} \mathcal{D}^{n}=\prod_{i=1}^{N} \prod_{n=0}^{\infty} \frac{1}{1-\mathcal{D}^{n} \phi_{i}}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

The kinetic Lagrangian density of N scalar fields in $\mathrm{d}=1$ is

$$
\mathcal{L}_{\text {kin }}\left(\left\{\Phi_{i}, \partial \Phi_{i}\right\}\right) \equiv \sum_{i=1}^{N} \frac{1}{2}\left(\partial \Phi_{i}\right)^{2} .
$$

(2) Only EOM relations.

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

The kinetic Lagrangian density of N scalar fields in $\mathrm{d}=1$ is

$$
\mathcal{L}_{\text {kin }}\left(\left\{\Phi_{i}, \partial \Phi_{i}\right\}\right) \equiv \sum_{i=1}^{N} \frac{1}{2}\left(\partial \Phi_{i}\right)^{2} .
$$

(2) Only EOM relations. Considering the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$, the (free) EOM relations are $\partial^{2} \Phi_{i}=0$.
\qquad

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

The kinetic Lagrangian density of N scalar fields in $\mathrm{d}=1$ is

$$
\mathcal{L}_{\text {kin }}\left(\left\{\Phi_{i}, \partial \Phi_{i}\right\}\right) \equiv \sum_{i=1}^{N} \frac{1}{2}\left(\partial \Phi_{i}\right)^{2} .
$$

(2) Only EOM relations. Considering the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$, the (free) EOM relations are $\partial^{2} \Phi_{i}=0$.

We even have $\partial^{n} \Phi_{i}=0$ for $n \geq 2$
giving us the EOM Hilbert series of the form

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

The kinetic Lagrangian density of N scalar fields in $\mathrm{d}=1$ is

$$
\mathcal{L}_{\text {kin }}\left(\left\{\Phi_{i}, \partial \Phi_{i}\right\}\right) \equiv \sum_{i=1}^{N} \frac{1}{2}\left(\partial \Phi_{i}\right)^{2} .
$$

(2) Only EOM relations. Considering the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$, the (free) EOM relations are $\partial^{2} \Phi_{i}=0$.

We even have $\partial^{n} \Phi_{i}=0$ for $n \geq 2$, so the operator basis is now freely and finitely generated by the set $\left\{\Phi_{i}, \partial \Phi_{i}\right\}_{i=1}^{N}$, giving us the EOM Hilbert series of the form

$$
H_{N}^{\mathrm{EOM}}(\phi, \mathcal{D})=\prod_{i=1}^{N} \frac{1}{\left(1-\phi_{i}\right)\left(1-\mathcal{D} \phi_{i}\right)}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

So for $\boldsymbol{r} \neq \mathbf{0}$ we have $d_{\boldsymbol{r} n}^{\mathrm{IBP}}=d_{\boldsymbol{r} n}^{\text {free }}-d_{\boldsymbol{r} n-1}^{\text {free }}$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

So for $\boldsymbol{r} \neq \mathbf{0}$ we have $d_{\boldsymbol{r} n}^{\mathrm{IBP}}=d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\left(\right.$ and $\left.d_{\mathbf{0} n}^{\mathrm{IBP}}=\delta_{0 n}\right)$.

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

So for $\boldsymbol{r} \neq \mathbf{0}$ we have $d_{\boldsymbol{r} n}^{\mathrm{IBP}}=d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\left(\right.$ and $\left.d_{\mathbf{0} n}^{\mathrm{IBP}}=\delta_{0 n}\right)$.
A simple reordering of the summation gives us

$$
5 \sum_{\Gamma}^{x}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

So for $\boldsymbol{r} \neq \mathbf{0}$ we have $d_{\boldsymbol{r} n}^{\mathrm{IBP}}=d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\left(\right.$ and $\left.d_{\mathbf{0} n}^{\mathrm{IBP}}=\delta_{0 n}\right)$.
A simple reordering of the summation gives us

$$
\sum_{\boldsymbol{r}} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{IBP}} \boldsymbol{\phi}^{\boldsymbol{r}} \mathcal{D}^{n}=1+\sum_{\boldsymbol{r} \neq \mathbf{0}} \sum_{n=0}^{\infty}\left(d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\right) \boldsymbol{\phi}^{r} \mathcal{D}^{n}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

So for $\boldsymbol{r} \neq \mathbf{0}$ we have $d_{\boldsymbol{r} n}^{\mathrm{IBP}}=d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\left(\right.$ and $\left.d_{\mathbf{0} n}^{\mathrm{IBP}}=\delta_{0 n}\right)$.
A simple reordering of the summation gives us

$$
\begin{aligned}
& \sum_{\boldsymbol{r}} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{IBP}} \boldsymbol{\phi}^{\boldsymbol{r}} \mathcal{D}^{n}=1+\sum_{\boldsymbol{r} \neq \mathbf{0}} \sum_{n=0}^{\infty}\left(d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\right) \boldsymbol{\phi}^{\boldsymbol{r}} \mathcal{D}^{n}= \\
& 1+(1-\mathcal{D}) \sum_{\boldsymbol{r} \neq \mathbf{0}} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{free}} \boldsymbol{\phi}^{\boldsymbol{r}} \mathcal{D}^{n}
\end{aligned}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

So for $\boldsymbol{r} \neq \mathbf{0}$ we have $d_{\boldsymbol{r} n}^{\mathrm{IBP}}=d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\left(\right.$ and $\left.d_{\mathbf{0} n}^{\mathrm{IBP}}=\delta_{0 n}\right)$.
A simple reordering of the summation gives us

$$
\begin{aligned}
& \sum_{\boldsymbol{r}} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{IBP}} \boldsymbol{\phi}^{r} \mathcal{D}^{n}=1+\sum_{\boldsymbol{r} \neq \mathbf{0}} \sum_{n=0}^{\infty}\left(d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\right) \boldsymbol{\phi}^{r} \mathcal{D}^{n}= \\
& 1+(1-\mathcal{D}) \sum_{\boldsymbol{r} \neq \mathbf{0}} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{free}} \boldsymbol{\phi}^{r} \mathcal{D}^{n}=\mathcal{D}+(1-\mathcal{D}) H_{N}^{\mathrm{free}}\left(\mathcal{D},\left\{\phi_{i}\right\}\right)
\end{aligned}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(3) Only IBP relations. One particular example in the case of only one field flavor would be

$$
0 \sim \partial\left(\left(\partial^{n-1} \Phi\right) \Phi^{k}\right)=\left(\partial^{n} \Phi\right) \Phi^{k}+k\left(\partial^{n-1} \Phi\right)(\partial \Phi) \Phi^{k-1}
$$

So for $\boldsymbol{r} \neq \mathbf{0}$ we have $d_{\boldsymbol{r} n}^{\mathrm{IBP}}=d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\left(\right.$ and $\left.d_{\mathbf{0} n}^{\mathrm{IBP}}=\delta_{0 n}\right)$.
A simple reordering of the summation gives us

$$
\begin{aligned}
& \sum_{\boldsymbol{r}} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{IBP}} \boldsymbol{\phi}^{r} \mathcal{D}^{n}=1+\sum_{\boldsymbol{r} \neq \mathbf{0}} \sum_{n=0}^{\infty}\left(d_{\boldsymbol{r} n}^{\mathrm{free}}-d_{\boldsymbol{r} n-1}^{\mathrm{free}}\right) \boldsymbol{\phi}^{r} \mathcal{D}^{n}= \\
& 1+(1-\mathcal{D}) \sum_{\boldsymbol{r} \neq \mathbf{0}} \sum_{n=0}^{\infty} d_{\boldsymbol{r} n}^{\mathrm{free}} \boldsymbol{\phi}^{r} \mathcal{D}^{n}=\mathcal{D}+(1-\mathcal{D}) H_{N}^{\mathrm{free}}\left(\mathcal{D},\left\{\phi_{i}\right\}\right)
\end{aligned}
$$

Again, the IBP Hilbert series is given by a straightforward modification of the free Hilbert series as

$$
H_{N}^{\mathrm{IBP}}(\phi, \mathcal{D})=\mathcal{D}+(1-\mathcal{D}) \prod_{i=1}^{N} \prod_{n=0}^{\infty} \frac{1}{1-\mathcal{D}^{n} \phi_{i}}
$$

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(4) Both EOM and IBP relations.

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(4) Both EOM and IBP relations. Interplay of both types of relations makes this problem harder (and thus interesting).

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(4) Both EOM and IBP relations. Interplay of both types of relations makes this problem harder (and thus interesting). It is still possible to find analytic expression by techniques similar to those we will present in the following, see
B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Communications in Mathematical Physics, 2015, no. 2, DOI: 10.1007/s00220-015-2518-2. arXiv: 1507.07240 [hep-th]

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(4) Both EOM and IBP relations. Interplay of both types of relations makes this problem harder (and thus interesting). It is still possible to find analytic expression by techniques similar to those we will present in the following, see
B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Communications in Mathematical Physics, 2015, no. 2, DoI: 10.1007/s00220-015-2518-2. arXiv: 1507.07240 [hep-th]

Only in $d=1$ the Lorentz group is trivial and the application of the derivatives is always unambiguous.

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(4) Both EOM and IBP relations. Interplay of both types of relations makes this problem harder (and thus interesting). It is still possible to find analytic expression by techniques similar to those we will present in the following, see

> B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Communications in Mathematical Physics, 2015 , no. 2, DOI: $10.1007 /$ s00220-015-2518-2. arXiv: 1507.07240 [hep-th]

Only in $d=1$ the Lorentz group is trivial and the application of the derivatives is always unambiguous.

From now on, we always assume $\mathrm{d} \geq 2$, where each derivative carries an index with non-trivial transformation properties.

Example - N Scalar Fields $\left\{\Phi_{i}\right\}$ in $\mathrm{d}=1$

(4) Both EOM and IBP relations. Interplay of both types of relations makes this problem harder (and thus interesting). It is still possible to find analytic expression by techniques similar to those we will present in the following, see
> B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, Communications in Mathematical Physics, 2015, no. 2, DOI: 10.1007/s00220-015-2518-2. arXiv: 1507.07240 [hep-th]

Only in $d=1$ the Lorentz group is trivial and the application of the derivatives is always unambiguous.

From now on, we always assume $\mathrm{d} \geq 2$, where each derivative carries an index with non-trivial transformation properties. To construct a Lorentz invariant operator, we are forced to contract all the indices (similarly for internal symmetries).

What about $\mathrm{d} \geq 2$?

Usually there are multiple possibilities how to contract all indices (and they rapidly grow with the number of derivatives). Together with non-trivial relations this brings substantial complexity.

What about $\mathrm{d} \geq 2$?

Usually there are multiple possibilities how to contract all indices (and they rapidly grow with the number of derivatives). Together with non-trivial relations this brings substantial complexity.

Challenge. Try to guess the number of independent operators of the type $\partial^{n} \Phi^{4}$ for $n=2,4,6,8,10,12, \ldots$ in $\mathrm{d}=4$.

setting, for an arbitrary dimension and field content?

What about $\mathrm{d} \geq 2$?

Usually there are multiple possibilities how to contract all indices (and they rapidly grow with the number of derivatives). Together with non-trivial relations this brings substantial complexity.

Challenge. Try to guess the number of independent operators of the type $\partial^{n} \Phi^{4}$ for $n=2,4,6,8,10,12, \ldots$ in $\mathrm{d}=4$.

What about $\mathrm{d} \geq 2$?

Usually there are multiple possibilities how to contract all indices (and they rapidly grow with the number of derivatives). Together with non-trivial relations this brings substantial complexity.

Challenge. Try to guess the number of independent operators of the type $\partial^{n} \Phi^{4}$ for $n=2,4,6,8,10,12, \ldots$ in $\mathrm{d}=4$.

How do we obtain the Hilbert series in a more general setting, for an arbitrary dimension and field content?

What about $\mathrm{d} \geq 2$?

Usually there are multiple possibilities how to contract all indices (and they rapidly grow with the number of derivatives). Together with non-trivial relations this brings substantial complexity.

Challenge. Try to guess the number of independent operators of the type $\partial^{n} \Phi^{4}$ for $n=2,4,6,8,10,12, \ldots$ in $\mathrm{d}=4$.

How do we obtain the Hilbert series in a more general setting, for an arbitrary dimension and field content?
B. Henning, X. Lu, T. Melia, and H. Murayama, Operator bases, S-matrices, and their partition functions, Journal of High Energy Physics, 2017, no. 10, DOI: 10.1007/jhep10(2017)199. arXiv: 1706.08520 [hep-th]

Representations of Lie Groups

Idea: Construct the representation of all operators, and then project out only independent Lorentz invariant ones.

Representations of Lie Groups

Idea: Construct the representation of all operators, and then project out only independent Lorentz invariant ones.

Figure: A representation ρ of a group G on a vector space V. A group element $g \in G$ is represented by a linear operator $\rho(g) \in \mathrm{GL}(V)$.

The Projection Formula

Figure: We project $\boldsymbol{v} \in V$ onto the trivial subrepresentation V^{G} of V. As the projection map p averages over G, the action of $g \in G$ rotates components of \boldsymbol{v} in the x - y plane, leaving only $\boldsymbol{v}^{G} \in V^{G}$ pointing along the z-direction.

The Projection Formula

Figure: We project $\boldsymbol{v} \in V$ onto the trivial subrepresentation V^{G} of V. As the projection map p averages over G, the action of $g \in G$ rotates components of \boldsymbol{v} in the x - y plane, leaving only $\boldsymbol{v}^{G} \in V^{G}$ pointing along the z-direction.
$\operatorname{dim} V^{G}$

The Projection Formula

Figure: We project $\boldsymbol{v} \in V$ onto the trivial subrepresentation V^{G} of V. As the projection map p averages over G, the action of $g \in G$ rotates components of \boldsymbol{v} in the x - y plane, leaving only $\boldsymbol{v}^{G} \in V^{G}$ pointing along the z-direction.

$$
\operatorname{dim} V^{G}=\operatorname{Tr}(\mathrm{p})
$$

The Projection Formula

Figure: We project $\boldsymbol{v} \in V$ onto the trivial subrepresentation V^{G} of V. As the projection map p averages over G, the action of $g \in G$ rotates components of \boldsymbol{v} in the x - y plane, leaving only $\boldsymbol{v}^{G} \in V^{G}$ pointing along the z-direction.

$$
\operatorname{dim} V^{G}=\operatorname{Tr}(\mathrm{p})=\int_{G} \operatorname{Tr}\left(\left.g\right|_{V}\right) d g
$$

The Projection Formula

Figure: We project $\boldsymbol{v} \in V$ onto the trivial subrepresentation V^{G} of V. As the projection map p averages over G, the action of $g \in G$ rotates components of \boldsymbol{v} in the x - y plane, leaving only $\boldsymbol{v}^{G} \in V^{G}$ pointing along the z-direction.

$$
\operatorname{dim} V^{G}=\operatorname{Tr}(\mathrm{p})=\int_{G} \operatorname{Tr}\left(\left.g\right|_{V}\right) d g \equiv \int_{G} \chi_{V}(g) d g
$$

Multiplicities and characters

More generally, we have the following formulas for multiplicities.

there exists a decomposition
where the V_{i} are distinct irreducible representations

Multiplicities and characters

More generally, we have the following formulas for multiplicities.
Theorem (Decomposition of compact Lie group representations). Let V be a representation of a compact Lie group G. Then there exists a decomposition

$$
V=\bigoplus_{i=1}^{k} V_{i}^{\oplus a_{i}} \equiv V_{1}^{\oplus a_{1}} \oplus \cdots \oplus V_{k}^{\oplus a_{k}}
$$

where the V_{i} are distinct irreducible representations

Multiplicities and characters

More generally, we have the following formulas for multiplicities.
Theorem (Decomposition of compact Lie group representations). Let V be a representation of a compact Lie group G. Then there exists a decomposition

$$
V=\bigoplus_{i=1}^{k} V_{i}^{\oplus a_{i}} \equiv V_{1}^{\oplus a_{1}} \oplus \cdots \oplus V_{k}^{\oplus a_{k}}
$$

where the V_{i} are distinct irreducible representations with multiplicities a_{i} given uniquely by

$$
\begin{aligned}
a_{i} & =\operatorname{dim} \operatorname{Hom}_{G}\left(V_{i}, V\right) \\
& =\int_{G} \chi_{V_{i}}\left(g^{-1}\right) \chi_{V}(g) d g=\int_{G} \overline{\chi_{V_{i}}(g)} \chi_{V}(g) d g
\end{aligned}
$$

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field. Derivation. The strategy is in the following diagram:

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field. Derivation. The strategy is in the following diagram:

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field. Derivation. The strategy is in the following diagram:

$$
\Phi \xrightarrow[\substack{\text { and EOM } \\ \partial^{a} \partial_{a} \Phi=0}]{\bigoplus_{n=0}^{\infty} \mathcal{D}^{n} \partial^{n} \bullet}
$$

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field. Derivation. The strategy is in the following diagram:

$$
\Phi \underset{\substack{\text { and EOM } \\
\partial^{2} \partial_{a} \Phi=0}}{\bigoplus_{n=0}^{\infty} \mathcal{D}^{n} \partial^{n} \bullet} R_{\Phi} \simeq\left(\begin{array}{c}
\Phi \\
\partial_{a} \Phi \\
\partial_{\left\{a_{1} \partial_{\left.a_{2}\right\}} \Phi\right.} \\
\vdots \\
\partial_{\left\{a_{1} \cdots \partial_{\left.a_{n}\right\}} \Phi\right.} \\
\vdots
\end{array}\right)
$$

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field. Derivation. The strategy is in the following diagram:

$$
\Phi \stackrel{\substack{\text { and EOM } \\
\partial^{a} \partial_{a} \Phi=0}}{\bigoplus_{n=0}^{\infty} \mathcal{D}^{n} \partial^{n} \bullet} R_{\Phi} \simeq\left(\begin{array}{c}
\Phi \\
\partial_{a} \Phi \\
\partial_{\left\{a_{1} \partial_{\left.a_{2}\right\}} \Phi\right.}^{\vdots} \\
\vdots \\
\partial_{\left\{a_{1} \cdots \partial_{\left.a_{n}\right\}} \Phi\right.} \\
\vdots
\end{array}\right) \xrightarrow[\text { since } \Phi \text { is a boson }]{\bigoplus^{\infty}} \underset{ }{\bigoplus^{\infty} \phi^{r} S^{r}(\bullet)}
$$

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field.
Derivation. The strategy is in the following diagram:

$$
\Phi \underset{\substack{\text { and EOM } \\
\partial^{2} \partial_{a} \Phi=0}}{\bigoplus_{\infty=0}^{\infty} \mathcal{D}^{n} \partial^{n} \bullet} R_{\Phi} \simeq\left(\begin{array}{c}
\Phi \\
\partial_{a} \Phi \\
\partial_{\left\{a_{1} \partial_{\left.a_{2}\right\}} \Phi\right.} \\
\vdots \\
\partial_{\left\{a_{1} \cdots \partial_{\left.a_{n}\right\}} \Phi\right.} \\
\vdots
\end{array}\right) \underset{\text { since } \Phi \text { is a boson }}{\bigoplus_{\Phi}^{\infty} \phi^{r} S^{r} \bullet \bullet} \mathcal{J}_{\Phi}
$$

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field.
Derivation. The strategy is in the following diagram:

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field.
Derivation. The strategy is in the following diagram:

Strategy to compute Hilbert Series

For simplicity we will first work with a single real scalar field.
Derivation. The strategy is in the following diagram:

$$
\begin{aligned}
& \longrightarrow H(\phi, \mathcal{D})=\underbrace{\int_{\mathrm{SO}(\mathrm{~d})} \frac{1}{P(\mathcal{D} ; g)} \chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g) d g}_{H_{0}(\phi, \mathcal{D})}+\Delta H(\phi, \mathcal{D})
\end{aligned}
$$

Single Particle Graded Representation R_{Φ}

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial} \Phi) \Longrightarrow \square \Phi \equiv \overparen{\partial \partial} \Phi \sim 0
$$

Single Particle Graded Representation R_{Φ}

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial} \Phi) \Longrightarrow \square \Phi \equiv \overparen{\partial} \partial \Phi \sim 0
$$

Derivation (Single Particle Graded Representation R_{Φ}). We easily see that all operators composed of one Φ modulo EOM are in

Single Particle Graded Representation R_{Φ}

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial} \Phi) \Longrightarrow \square \Phi \equiv \overparen{\partial} \partial \Phi \sim 0
$$

Derivation (Single Particle Graded Representation R_{Φ}). We easily see that all operators composed of one Φ modulo EOM are in

$$
R_{\Phi}=\operatorname{Span}\left(\begin{array}{c}
\Phi \\
\partial_{a} \Phi \\
\partial_{\left\{a_{1}\right.} \partial_{\left.a_{2}\right\}} \Phi \\
\vdots \\
\partial_{\left\{a_{1}\right.} \cdots \partial_{\left.a_{n}\right\}} \Phi \\
\vdots
\end{array}\right)
$$

Single Particle Graded Representation R_{Φ}

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial} \Phi) \Longrightarrow \square \Phi \equiv \overparen{\partial} \partial \Phi \sim 0
$$

Derivation (Single Particle Graded Representation R_{Φ}). We easily see that all operators composed of one Φ modulo EOM are in

$$
R_{\Phi}=\operatorname{Span}\left(\begin{array}{c}
\Phi \\
\partial_{a} \Phi \\
\partial_{\left\{a_{1}\right.} \partial_{\left.a_{2}\right\}} \Phi \\
\vdots \\
\partial_{\left\{a_{1} \cdots \partial_{\left.a_{n}\right\}} \Phi\right.} \\
\vdots
\end{array}\right) \equiv \bigoplus_{n=0}^{\infty} \mathcal{D}^{n} S^{\{n\}}(\square)
$$

Single Particle Graded Representation R_{Φ}

$$
\mathcal{L}_{\text {kin }}=\frac{1}{2}\left(\partial_{a} \Phi\right)\left(\partial^{a} \Phi\right)=\frac{1}{2}(\overparen{\partial \Phi)(\partial \Phi)} \Longrightarrow \square \Phi \equiv \overparen{\partial} \partial \Phi \sim 0
$$

Derivation (Single Particle Graded Representation R_{Φ}). We easily see that all operators composed of one Φ modulo EOM are in

$$
R_{\Phi}=\operatorname{Span}\left(\begin{array}{c}
\Phi \\
\partial_{a} \Phi \\
\partial_{\left\{a_{1}\right.} \partial_{\left.a_{2}\right\}} \Phi \\
\vdots \\
\partial_{\left\{a_{1}\right.} \cdots \partial_{\left.a_{n}\right\}} \Phi
\end{array}\right) \equiv \bigoplus_{n=0}^{\infty} \mathcal{D}^{n} S^{\{n\}}(\square) \equiv S^{\{\bullet\}}(\square)
$$

where ${ }_{\{\ldots\}}$ denotes the traceless symmetric part and $\square \equiv \mathbb{C}^{d}$ denotes the standard representation of $\mathrm{SO}(\mathrm{d})$.

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry.

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right)
$$

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{〔 \bullet\}}(\square)\right)
$$

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{\{\bullet\}}(\square)\right) .
$$

The corresponding graded character can be calculated as

$$
\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g)
$$

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{〔 \bullet\}}(\square)\right)
$$

The corresponding graded character can be calculated as

$$
\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g) \equiv \chi_{S\left(R_{\Phi}\right)}(\phi, \mathcal{D} ; g)
$$

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{\{\bullet\}}(\square)\right)
$$

The corresponding graded character can be calculated as

$$
\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g) \equiv \chi_{S\left(R_{\Phi}\right)}(\phi, \mathcal{D} ; g)=\operatorname{PE}\left[\phi \chi_{R_{\Phi}}(\mathcal{D} ; g)\right]
$$

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{〔 \bullet\}}(\square)\right)
$$

The corresponding graded character can be calculated as

$$
\begin{aligned}
\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g) \equiv \chi_{S\left(R_{\Phi}\right)}(\phi, \mathcal{D} ; g) & =\operatorname{PE}\left[\phi \chi_{R_{\Phi}}(\mathcal{D} ; g)\right] \\
\quad=\operatorname{PE}\left[\phi \chi_{S^{〔} \cdot \boldsymbol{\bullet}(\square)}(\mathcal{D} ; g)\right] & =\operatorname{PE}
\end{aligned}
$$

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{\{\bullet\}}(\square)\right) .
$$

The corresponding graded character can be calculated as

$$
\begin{aligned}
\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g) \equiv \chi_{S\left(R_{\Phi}\right)}(\phi, \mathcal{D} ; g) & =\operatorname{PE}\left[\phi \chi_{R_{\Phi}}(\mathcal{D} ; g)\right] \\
=\operatorname{PE}\left[\phi \chi_{S^{\{\bullet\}}(\square)}(\mathcal{D} ; g)\right] & =\operatorname{PE}\left[\phi\left(1-\mathcal{D}^{2}\right) \chi_{S(\square)}(\mathcal{D} ; g)\right]
\end{aligned}
$$

Remark (Gram determinant conditions)

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{〔 \bullet\}}(\square)\right)
$$

The corresponding graded character can be calculated as

$$
\begin{aligned}
\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g) \equiv \chi_{S\left(R_{\Phi}\right)}(\phi, \mathcal{D} ; g) & =\operatorname{PE}\left[\phi \chi_{R_{\Phi}}(\mathcal{D} ; g)\right] \\
=\operatorname{PE}\left[\phi \chi_{S^{\{\bullet\}}(\square)}(\mathcal{D} ; g)\right] & =\operatorname{PE}\left[\phi\left(1-\mathcal{D}^{2}\right) \chi_{S(\square)}(\mathcal{D} ; g)\right]
\end{aligned}
$$

Remark (Gram determinant conditions). Since we are building \mathcal{J}_{Φ} in a sense constructively,

Multi-Particle Graded Representation \mathcal{J}_{Φ}

Derivation (Multi-Particle Graded Representation \mathcal{J}_{Φ}). Since Φ is a boson, the corresponding operators must obey permutation symmetry. We can obtain all operators modulo EOM in the symmetric powers of R_{Φ}, thus

$$
\mathcal{J}_{\Phi} \equiv \bigoplus_{r=0}^{\infty} \phi^{r} S^{r}\left(R_{\Phi}\right) \equiv S\left(R_{\Phi}\right) \equiv S\left(S^{〔 \bullet\}}(\square)\right)
$$

The corresponding graded character can be calculated as

$$
\begin{aligned}
\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g) \equiv \chi_{S\left(R_{\Phi}\right)}(\phi, \mathcal{D} ; g) & =\operatorname{PE}\left[\phi \chi_{R_{\Phi}}(\mathcal{D} ; g)\right] \\
=\operatorname{PE}\left[\phi \chi_{S^{\{\bullet\}}(\square)}(\mathcal{D} ; g)\right] & =\operatorname{PE}\left[\phi\left(1-\mathcal{D}^{2}\right) \chi_{S(\square)}(\mathcal{D} ; g)\right]
\end{aligned}
$$

Remark (Gram determinant conditions). Since we are building \mathcal{J}_{Φ} in a sense constructively, representation theory automatically discards $\bigwedge^{n}(\square)$ for $n>\mathrm{d}$, thus addressing GDC relations.

Integration by parts redundancy

Operators with one free index can generate IBP relations, but only those that have nonzero divergence.

Integration by parts redundancy

Operators with one free index can generate IBP relations, but only those that have nonzero divergence. Prime example which do not contribute are operators of the form
$\partial^{a} \mathcal{O}_{a b}$ where $\mathcal{O}_{a b} \equiv \mathcal{O}_{[a b]}$

Integration by parts redundancy

Operators with one free index can generate IBP relations, but only those that have nonzero divergence. Prime example which do not contribute are operators of the form
$\partial^{a} \mathcal{O}_{a b}$ where $\mathcal{O}_{a b} \equiv \mathcal{O}_{[a b]} \quad \Longrightarrow \quad \partial^{b} \partial^{a} \mathcal{O}_{a b}=\partial^{(b} \partial^{a)} \mathcal{O}_{[a b]}=0$,
that is so called co-exact 1-forms.

Integration by parts redundancy

Operators with one free index can generate IBP relations, but only those that have nonzero divergence. Prime example which do not contribute are operators of the form
$\partial^{a} \mathcal{O}_{a b}$ where $\mathcal{O}_{a b} \equiv \mathcal{O}_{[a b]} \quad \Longrightarrow \quad \partial^{b} \partial^{a} \mathcal{O}_{a b}=\partial^{(b} \partial^{a)} \mathcal{O}_{[a b]}=0$,
that is so called co-exact 1 -forms. For forms we automatically have $\partial \cdot \partial \cdot \bullet=0$, thus every co-exact form is also co-closed.

Integration by parts redundancy

Operators with one free index can generate IBP relations, but only those that have nonzero divergence. Prime example which do not contribute are operators of the form
$\partial^{a} \mathcal{O}_{a b}$ where $\mathcal{O}_{a b} \equiv \mathcal{O}_{[a b]} \quad \Longrightarrow \quad \partial^{b} \partial^{a} \mathcal{O}_{a b}=\partial^{(b} \partial^{a)} \mathcal{O}_{[a b]}=0$,
that is so called co-exact 1-forms. For forms we automatically have $\partial \cdot \partial \cdot \bullet=0$, thus every co-exact form is also co-closed.

Total divergence terms are equivalent to zero by IBP relations,

Integration by parts redundancy

Operators with one free index can generate IBP relations, but only those that have nonzero divergence. Prime example which do not contribute are operators of the form
$\partial^{a} \mathcal{O}_{a b}$ where $\mathcal{O}_{a b} \equiv \mathcal{O}_{[a b]} \quad \Longrightarrow \quad \partial^{b} \partial^{a} \mathcal{O}_{a b}=\partial^{(b} \partial^{a)} \mathcal{O}_{[a b]}=0$,
that is so called co-exact 1-forms. For forms we automatically have $\partial \cdot \partial \cdot \bullet=0$, thus every co-exact form is also co-closed.

Total divergence terms are equivalent to zero by IBP relations, thus $\mathcal{K} \equiv \operatorname{Span}(\mathcal{B})$ is composed of all 0 -forms (Lorentz invariants) contained in \mathcal{J} modulo the co-exact ones,

Integration by parts redundancy

Operators with one free index can generate IBP relations, but only those that have nonzero divergence. Prime example which do not contribute are operators of the form
$\partial^{a} \mathcal{O}_{a b}$ where $\mathcal{O}_{a b} \equiv \mathcal{O}_{[a b]} \quad \Longrightarrow \quad \partial^{b} \partial^{a} \mathcal{O}_{a b}=\partial^{(b} \partial^{a)} \mathcal{O}_{[a b]}=0$,
that is so called co-exact 1-forms. For forms we automatically have $\partial \cdot \partial \cdot \bullet=0$, thus every co-exact form is also co-closed.

Total divergence terms are equivalent to zero by IBP relations, thus $\mathcal{K} \equiv \operatorname{Span}(\mathcal{B})$ is composed of all 0 -forms (Lorentz invariants) contained in \mathcal{J} modulo the co-exact ones, leading to

$$
H(\phi, \mathcal{D}) \equiv \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{K}=\operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[0] \text { not co-exact }}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\operatorname{dim} \mathcal{K}=\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{Jim}_{[0] \text { not co-exact }}^{\operatorname{dim}} \mathcal{J}_{[0] \text { co-exact }}}^{\operatorname{dim}}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{J}_{[0] \text { not co-exact }}^{\operatorname{dim} \mathcal{J}_{[0] \text { co-exact }}}}^{\operatorname{dim}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{dim}_{\mathcal{J}_{[0]} \text { co-exact }}^{\operatorname{dim} \mathcal{J}_{[0] \text { not co-exact }}}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }}
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{dim}^{\operatorname{dim} \mathcal{J}_{[0] \text { not co-exact }} \text { coexact }}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{dim}_{\mathcal{J}_{[0]}}}^{\operatorname{dim} \mathcal{J}_{\text {co-exact co-exact }}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}\right.
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{J}_{[0] \text { not co-exact }}^{\operatorname{dim} \mathcal{J}_{[0] \text { co-exact }}}}^{\operatorname{dim}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right)
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{Jim}_{[0] \text { not co-exact }}^{\operatorname{dim}}}^{\operatorname{din} \text { co-exact }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right) \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{Jim} \mathcal{J}_{\text {[1] co-exact }}\right.
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{Jim}_{[0] \text { not co-exact }}^{\operatorname{dim}} \mathcal{J}_{[0] \text { co-exact }}}^{\operatorname{dim}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right) \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\right.
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{J}_{[00 \text { not co-exact }}^{\operatorname{dim} \mathcal{J}_{[0] \text { co-exact }}}}^{\operatorname{dim}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right) \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}(\operatorname{dim} \mathcal{J}_{[1]}-\underbrace{\operatorname{dim} \mathcal{J}_{[1] \text { co-exact }}}_{\mathcal{D} \operatorname{dim} \mathcal{J}_{[2] \text { not co-closed }}}
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{dim}_{\mathcal{J}_{[0] \text { co-exact }}}^{\operatorname{dim} \mathcal{J}_{[0] \text { not co-exact }}}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right) \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}(\operatorname{dim} \mathcal{J}_{[1]}-\underbrace{\operatorname{dim} \mathcal{J}_{[1] \text { co-exact }}}_{\mathcal{D} \operatorname{dim} \mathcal{J}_{[2] \text { not co-closed }}}-\operatorname{dim} \mathcal{J}_{[1]} \begin{array}{l}
\text { co-closed } \\
\text { not co-exact }
\end{array})
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{dim}_{[0] \text { Jot co-exact }}}^{\operatorname{dim}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right) \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}(\operatorname{dim} \mathcal{J}_{[1]}-\underbrace{\operatorname{dim} \mathcal{J}_{[1] \text { co-exact }}}_{\mathcal{D} \operatorname{dim} \mathcal{J}_{[2] \text { not co-closed }}}-\operatorname{dim} \mathcal{J}_{[1]} \begin{array}{l}
\text { co-closed } \\
\text { not co-exact }
\end{array}) \\
& \vdots \quad \text { iteratively }
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
& \begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{dim}_{\mathcal{J}_{[0] \text { co-exact }}}^{\operatorname{dim} \mathcal{J}_{[0] \text { not co-exact }}}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right) \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}(\operatorname{dim} \mathcal{J}_{[1]}-\underbrace{\operatorname{dim} \mathcal{J}_{[1] \text { co-exact }}}_{\mathcal{D} \operatorname{dim} \mathcal{J}_{[2] \text { not co-closed }}}-\operatorname{dim} \mathcal{J}_{[1]} \begin{array}{l}
\text { co-closed } \\
\text { not co-exact }
\end{array})
\end{aligned} \\
& =\underbrace{\sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim} \mathcal{J}_{[k]}}_{H_{0}}
\end{aligned}
$$

Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting $H=H_{0}+\Delta H$).

$$
\begin{aligned}
\operatorname{dim} \mathcal{K} & =\overbrace{\operatorname{dim} \mathcal{J}_{[0]}-\operatorname{dim}_{[0] \text { co-exact }}}^{\operatorname{dim} \mathcal{J}_{[0] \text { not co-exact }}} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D} \operatorname{dim} \mathcal{J}_{[1] \text { not co-closed }} \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}\left(\operatorname{dim} \mathcal{J}_{[1]}-\operatorname{dim} \mathcal{J}_{[1] \text { co-closed }}\right) \\
& =\operatorname{dim} \mathcal{J}_{[0]}-\mathcal{D}(\operatorname{dim} \mathcal{J}_{[1]}-\underbrace{\operatorname{dim} \mathcal{J}_{[1] \text { co-exact }}}_{\mathcal{D} \operatorname{dim} \mathcal{J}_{[2] \text { not co-closed }}}-\operatorname{dim} \mathcal{J}_{[1]} \begin{array}{l}
\text { co-closed } \\
\text { not co-exact }
\end{array}) \\
\text { iteratively } & \vdots \\
& =\underbrace{\sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim} \mathcal{J}_{[k]}}_{H_{0}}+\underbrace{\sum_{k=1}^{\mathrm{d}}(-1)^{k+1} \mathcal{D}^{k} \operatorname{dim} \mathcal{J}_{[k]} \begin{array}{c}
\text { co-closed } \\
\text { not co-exact }
\end{array}}_{\Delta H}
\end{aligned}
$$

The Master Formula

Derivation (Master Formula for H_{0}). Since IBP relations were addressed quite generally, we obtain the Master Formula

The Master Formula

Derivation (Master Formula for H_{0}). Since IBP relations were addressed quite generally, we obtain the Master Formula

$$
H_{0}(\phi, \mathcal{D})=\int_{\mathrm{SO}(\mathrm{~d})} \chi_{\bigwedge^{-}(\square)}\left(\mathcal{D} ; g^{-1}\right) \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g
$$

The Master Formula

Derivation (Master Formula for H_{0}). Since IBP relations were addressed quite generally, we obtain the Master Formula

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & =\int_{\mathrm{SO}(\mathrm{~d})} \chi_{\Lambda^{-}(\square)}\left(\mathcal{D} ; g^{-1}\right) \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g \\
& \equiv \int_{\mathrm{SO}(\mathrm{~d})} \frac{1}{P(\mathcal{D} ; g)} \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g
\end{aligned}
$$

The Master Formula

Derivation (Master Formula for H_{0}). Since IBP relations were addressed quite generally, we obtain the Master Formula

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & =\int_{\mathrm{SO}(\mathrm{~d})} \chi_{\Lambda^{-}(\square)}\left(\mathcal{D} ; g^{-1}\right) \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g \\
& \equiv \int_{\mathrm{SO}(\mathrm{~d})} \frac{1}{P(\mathcal{D} ; g)} \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g
\end{aligned}
$$

where

$$
P(\mathcal{D} ; \boldsymbol{x} \leftrightarrow g) \equiv\left\{\begin{array}{cl}
\prod_{i=1}^{r} \frac{1}{\left(1-\mathcal{D} x_{i}\right)\left(1-\mathcal{D} / x_{i}\right)} & \text { for } \mathrm{d}=2 \mathrm{r}, \\
\frac{1}{1-\mathcal{D}} \prod_{i=1}^{r} \frac{1}{\left(1-\mathcal{D} x_{i}\right)\left(1-\mathcal{D} / x_{i}\right)} & \text { for } \mathrm{d}=2 \mathrm{r}+1 .
\end{array}\right.
$$

The Master Formula

Derivation (Master Formula for H_{0}). Since IBP relations were addressed quite generally, we obtain the Master Formula

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & =\int_{\mathrm{SO}(\mathrm{~d})} \chi_{\Lambda^{-}(\square)}\left(\mathcal{D} ; g^{-1}\right) \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g \\
& \equiv \int_{\mathrm{SO}(\mathrm{~d})} \frac{1}{P(\mathcal{D} ; g)} \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g
\end{aligned}
$$

where

$$
P(\mathcal{D} ; \boldsymbol{x} \leftrightarrow g) \equiv\left\{\begin{array}{cl}
\prod_{i=1}^{r} \frac{1}{\left(1-\mathcal{D} x_{i}\right)\left(1-\mathcal{D} / x_{i}\right)} & \text { for } \mathrm{d}=2 \mathrm{r}, \\
\frac{1}{1-\mathcal{D}} \prod_{i=1}^{r} \frac{1}{\left(1-\mathcal{D} x_{i}\right)\left(1-\mathcal{D} / x_{i}\right)} & \text { for } \mathrm{d}=2 \mathrm{r}+1
\end{array}\right.
$$

Integration can be further simplified by restricting it to the torus T of SO(d) (using the Weyl integration formula).

Applications - Single Scalar Field

Bringing everything together, for a single scalar field we obtain

$$
H_{0}(\phi, \mathcal{D})=\int_{\mathrm{SO}(4)} \frac{1}{P(\mathcal{D} ; g)} \overbrace{\operatorname{PE}\left[\phi\left(1-\mathcal{D}^{2}\right) P(\mathcal{D} ; g)\right]}^{\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g)} d g
$$

Applications - Single Scalar Field

Bringing everything together, for a single scalar field we obtain

$$
\begin{aligned}
& H_{0}(\phi, \mathcal{D})=\int_{\mathrm{SO}(4)} \frac{1}{P(\mathcal{D} ; g)} \overbrace{\operatorname{PE}\left[\phi\left(1-\mathcal{D}^{2}\right) P(\mathcal{D} ; g)\right]}^{\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g)} d g \\
&=\oiint_{\substack{\left|x_{1}\right|=1 \\
\left|x_{2}\right|=1}}\left(1-\mathcal{D} x_{1}\right)\left(1-\mathcal{D} / x_{1}\right)\left(1-\mathcal{D} x_{2}\right)\left(1-\mathcal{D} / x_{2}\right) \times \\
& \times \operatorname{PE}\left[\frac{\phi\left(1-\mathcal{D}^{2}\right)}{\left(1-\mathcal{D} x_{1}\right)\left(1-\mathcal{D} / x_{1}\right)\left(1-\mathcal{D} x_{2}\right)\left(1-\mathcal{D} / x_{2}\right)}\right] \times \\
& \times\left(1-x_{1} x_{2}\right)\left(1-x_{1} / x_{2}\right) \frac{d x_{1}}{2 \pi i x_{1}} \frac{d x_{2}}{2 \pi i x_{2}},
\end{aligned}
$$

Applications - Single Scalar Field

Bringing everything together, for a single scalar field we obtain

$$
\begin{aligned}
& H_{0}(\phi, \mathcal{D})=\int_{\mathrm{SO}(4)} \frac{1}{P(\mathcal{D} ; g)} \overbrace{\operatorname{PE}\left[\phi\left(1-\mathcal{D}^{2}\right) P(\mathcal{D} ; g)\right]}^{\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g)} d g \\
& =\oiint_{\substack{\left|x_{1}\right|=1 \\
\left|x_{2}\right|=1}}\left(1-\mathcal{D} x_{1}\right)\left(1-\mathcal{D} / x_{1}\right)\left(1-\mathcal{D} x_{2}\right)\left(1-\mathcal{D} / x_{2}\right) \times \\
& \times \operatorname{PE}\left[\frac{\phi\left(1-\mathcal{D}^{2}\right)}{\left(1-\mathcal{D} x_{1}\right)\left(1-\mathcal{D} / x_{1}\right)\left(1-\mathcal{D} x_{2}\right)\left(1-\mathcal{D} / x_{2}\right)}\right] \times \\
& \quad \times\left(1-x_{1} x_{2}\right)\left(1-x_{1} / x_{2}\right) \frac{d x_{1}}{2 \pi i x_{1}} \frac{d x_{2}}{2 \pi i x_{2}},
\end{aligned}
$$

where $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ parametrizes the torus T of $\mathrm{SO}(4)$,

Applications - Single Scalar Field

Bringing everything together, for a single scalar field we obtain

$$
\begin{aligned}
& H_{0}(\phi, \mathcal{D})=\int_{\mathrm{SO}(4)} \frac{1}{P(\mathcal{D} ; g)} \overbrace{\operatorname{PE}\left[\phi\left(1-\mathcal{D}^{2}\right) P(\mathcal{D} ; g)\right]}^{\chi_{\mathcal{J}_{\Phi}}(\phi, \mathcal{D} ; g)} d g \\
& =\oiint_{\substack{\left|x_{1}\right|=1 \\
\left|x_{2}\right|=1}}\left(1-\mathcal{D} x_{1}\right)\left(1-\mathcal{D} / x_{1}\right)\left(1-\mathcal{D} x_{2}\right)\left(1-\mathcal{D} / x_{2}\right) \times \\
& \times \operatorname{PE}\left[\frac{\phi\left(1-\mathcal{D}^{2}\right)}{\left(1-\mathcal{D} x_{1}\right)\left(1-\mathcal{D} / x_{1}\right)\left(1-\mathcal{D} x_{2}\right)\left(1-\mathcal{D} / x_{2}\right)}\right] \times \\
& \quad \times\left(1-x_{1} x_{2}\right)\left(1-x_{1} / x_{2}\right) \frac{d x_{1}}{2 \pi i x_{1}} \frac{d x_{2}}{2 \pi i x_{2}},
\end{aligned}
$$

where $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ parametrizes the torus T of $\mathrm{SO}(4)$, and

$$
P(\mathcal{D} ; \boldsymbol{x}) \equiv \chi_{S(\square)}(\mathcal{D} ; \boldsymbol{x})=\frac{1}{\left(1-\mathcal{D} x_{1}\right)\left(1-\mathcal{D} / x_{1}\right)\left(1-\mathcal{D} x_{2}\right)\left(1-\mathcal{D} / x_{2}\right)}
$$

Applications - Single Scalar Field

With the help of Mathematica we obtain for $\mathrm{d}=4$ and $\boldsymbol{r}=\mathbf{4}$:

```
h(z2)= ComputeHilbertScalar[d_, k_]:= IntegrateWhole[IntegrandsScalar[d, k]] // AbsoluteTiming
h(32)- [time, resultScalar)= ComputeHilbertScalar [4, 4]
    w integranda: {-\frac{(1-q\mp@subsup{q}{}{2}\mp@subsup{)}{}{4}x(1\mp@subsup{)}{}{2}(x(1)-x(2) x(2)(x(1)x(2)-1)}{96\mp@subsup{\pi}{}{2}(q-x(1)\mp@subsup{)}{}{(}(qx(1)-1\mp@subsup{)}{}{3}(q-x(2)\mp@subsup{)}{}{(}(qx(2)-1)\mp@subsup{)}{}{3}},-\frac{(1-q\mp@subsup{q}{}{4}\mp@subsup{)}{}{2}x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)(q-x(1))(qx(1)-1)(q-x(2))(q|(2)-1)}{32)}
    -\frac{(1-q}{2}\mp@subsup{)}{}{2}(1-\mp@subsup{q}{}{4})x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)
```



```
    * Poles {(x(2)
    w intermediate result: {\frac{1}{24(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{8(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{4-4\mp@subsup{q}{}{4}}\cdot\frac{1}{3(\mp@subsup{q}{}{4}+\mp@subsup{q}{}{2}+1)}},\frac{1}{4-4\mp@subsup{q}{}{4}}
Out[32)={0.443233,}\frac{1}{\mp@subsup{q}{}{10}-\mp@subsup{q}{}{5}-\mp@subsup{q}{}{4}+1}
```

Figure: Calculation of $H_{4}(\mathcal{D} \leftrightarrow q)$ in the accompanying Mathematica notebook.

Applications - Single Scalar Field

With the help of Mathematica we obtain for $\mathrm{d}=4$ and $\boldsymbol{r}=\mathbf{4}$:

```
V(zu)= ComputeHilbertScalar[d_, k_]:= IntegrateWhole[IntegrandsScalar[d, k]] // AbsoluteTiming
h(32)- (time, resultScalar) = ComputeHilbertScalar [4, 4]
    % integranta: {-\frac{(1-q\mp@subsup{q}{}{2}\mp@subsup{)}{}{4}x(1)}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)
    -\frac{(1-\mp@subsup{q}{}{2}\mp@subsup{)}{}{2}(1-q\mp@subsup{q}{}{4})x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)}{(q)}\mp@subsup{|}{}{2}(q)
    16\mp@subsup{\pi}{}{2}(q-x(1))(qx(1)-1)(q\mp@subsup{q}{}{2}-x(1\mp@subsup{)}{}{2})(\mp@subsup{q}{}{2}x(1\mp@subsup{)}{}{2}-1)(q-x(2))(qx(2)-1)(q\mp@subsup{q}{}{2}-x(2\mp@subsup{)}{}{2})(q\mp@subsup{q}{}{2}x(2\mp@subsup{)}{}{2}-1)
```



```
    w intermedate result:{\frac{ix(2)(q+4x(2)-3q}{{}(x(2\mp@subsup{)}{}{2}+1)+10\mp@subsup{q}{}{2}x(2)-3q(x(2\mp@subsup{)}{}{2}+1)+x(2))
    * Poles {(x(2)
    w intermediate resuli: {\frac{1}{24(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}}\cdot\frac{1}{8(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{4-4\mp@subsup{q}{}{4}},\frac{1}{3(\mp@subsup{q}{}{4}+\mp@subsup{q}{}{2}+1)}},\frac{1}{4-4\mp@subsup{q}{}{4}}
Out[32)={0.443233,}\frac{1}{\mp@subsup{q}{}{10}-\mp@subsup{q}{}{5}-\mp@subsup{q}{}{4}+1}
```

Figure: Calculation of $H_{4}(\mathcal{D} \leftrightarrow q)$ in the accompanying Mathematica notebook.

$$
\left.H_{4}(\mathcal{D}) \equiv H(\phi, \mathcal{D})\right|_{\phi^{4}}=\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)}
$$

Applications - Single Scalar Field

With the help of Mathematica we obtain for $\mathrm{d}=4$ and $\boldsymbol{r}=\mathbf{4}$:

```
h(z2)= ComputeHilbertScalar[d_, k_]:= IntegrateWhole[IntegrandsScalar[d, k]] // AbsoluteTiming
h(32)- (time, resultScalar) = ComputeHilbertScalar [4, 4]
```



```
    -\frac{(1-q\mp@subsup{q}{}{2}\mp@subsup{)}{}{(1-q}|}{(1)x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)}
    16\mp@subsup{\pi}{}{2}(q-x(1))(qx(1)-1)(q\mp@subsup{q}{}{2}-x(1)
```



```
    w intermedate result:{\frac{ix(2)(q+4x(2)-3q({}{{}(x(2\mp@subsup{)}{}{2}+1)+10\mp@subsup{q}{}{2}x(2)-3q(x(2\mp@subsup{)}{}{2}+1)+x(2))
    * Poles:{(x(2)
    w intermediate result: {\frac{1}{24(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{8(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{4-4\mp@subsup{q}{}{4}}\cdot\frac{1}{3(\mp@subsup{q}{}{4}+\mp@subsup{q}{}{2}+1)}},\frac{1}{4-4\mp@subsup{q}{}{4}}
Out[32)={0.443233,}\frac{1}{\mp@subsup{q}{}{10}-\mp@subsup{q}{}{5}-\mp@subsup{q}{}{4}+1}
```

Figure: Calculation of $H_{4}(\mathcal{D} \leftrightarrow q)$ in the accompanying Mathematica notebook.

$$
\begin{aligned}
\left.H_{4}(\mathcal{D}) \equiv H(\phi, \mathcal{D})\right|_{\phi^{4}} & =\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)} \\
& =1+\mathcal{D}^{4}+\mathcal{D}^{6}+\mathcal{D}^{8}+\mathcal{D}^{10}+2 \mathcal{D}^{12}+\cdots
\end{aligned}
$$

Applications - Single Scalar Field

With the help of Mathematica we obtain for $\mathrm{d}=4$ and $\boldsymbol{r}=\mathbf{4}$:

```
h(z2)= ComputeHilbertScalar[d_, k_]:= IntegrateWhole[IntegrandsScalar[d, k]] // AbsoluteTiming
h(32) - (time, resultScalar)= ComputeHilbertScalar [4, 4]
```



```
    -\frac{(1-q\mp@subsup{q}{}{2}\mp@subsup{)}{}{(1-q}|}{(1)x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)}
    16\pi}(q-x(1))(qx(1)-1)(q\mp@subsup{q}{}{2}-x(1\mp@subsup{)}{}{2})(\mp@subsup{q}{}{2}x(1\mp@subsup{)}{}{2}-1)(q-x(2))(qx(2)-1)(q\mp@subsup{q}{}{2}-x(2\mp@subsup{)}{}{2})(q\mp@subsup{q}{}{2}x(2\mp@subsup{)}{}{2}-1)\quad12\mp@subsup{\pi}{}{2}(\mp@subsup{q}{}{3}-x(1\mp@subsup{)}{}{3})(\mp@subsup{q}{}{3}x(1)\mp@subsup{)}{}{3}-1)(q\mp@subsup{q}{}{3}-x(2\mp@subsup{)}{}{3})(q\mp@subsup{q}{}{3}x(2\mp@subsup{)}{}{3}-1
```



```
    w intermedate result:{\frac{ix(2)(q+4x(2)-3q}{{}(x(2\mp@subsup{)}{}{2}+1)+10\mp@subsup{q}{}{2}x(2)-3q(x(2\mp@subsup{)}{}{2}+1)+x(2))
    * Poles:{(x(2)
    w intermediate result: {\frac{1}{24(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{8(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{4-4\mp@subsup{q}{}{4}}\cdot\frac{1}{3(\mp@subsup{q}{}{4}+\mp@subsup{q}{}{2}+1)}},\frac{1}{4-4\mp@subsup{q}{}{4}}
Out[32)={0.443233,}\frac{1}{\mp@subsup{q}{}{10}-\mp@subsup{q}{}{5}-\mp@subsup{q}{}{4}+1}
```

Figure: Calculation of $H_{4}(\mathcal{D} \leftrightarrow q)$ in the accompanying Mathematica notebook.

$$
\begin{aligned}
&\left.H_{4}(\mathcal{D}) \equiv H(\phi, \mathcal{D})\right|_{\phi^{4}}=\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)} \\
&=1+\mathcal{D}^{4}+\mathcal{D}^{6}+\mathcal{D}^{8}+\mathcal{D}^{10}+2 \mathcal{D}^{12}+\cdots \\
& \Phi^{4}
\end{aligned}
$$

Applications - Single Scalar Field

With the help of Mathematica we obtain for $\mathrm{d}=4$ and $\boldsymbol{r}=\mathbf{4}$:

```
h(zz)= ComputeHilbertScalar[d_, k_]:= IntegrateWhole[IntegrandsScalar[d, k]] // AbsoluteTiming
h(32)- (time, resultScalar) = ComputeHilbertScalar [4, 4]
```



```
    -\frac{(1-q}{2}\mp@subsup{)}{}{2}(1-\mp@subsup{q}{}{4})x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)
    16\pi
```



```
    * Poles:{(x(2)
    w intermediate result: {\frac{1}{24(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{8(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{4-4\mp@subsup{q}{}{4}}\cdot\frac{1}{3(\mp@subsup{q}{}{4}+\mp@subsup{q}{}{2}+1)}},\frac{1}{4-4\mp@subsup{q}{}{4}}
Out[32)={0.443233,}\frac{1}{\mp@subsup{q}{}{10}-\mp@subsup{q}{}{5}-\mp@subsup{q}{}{4}+1}
```

Figure: Calculation of $H_{4}(\mathcal{D} \leftrightarrow q)$ in the accompanying Mathematica notebook.

$$
\begin{aligned}
& \left.H_{4}(\mathcal{D}) \equiv H(\phi, \mathcal{D})\right|_{\phi^{4}}=\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)} \\
& =1+\mathcal{D}^{4}+\mathcal{D}^{6}+\mathcal{D}^{8}+\mathcal{D}^{10}+2 \mathcal{D}^{12}+\cdots \\
& \Phi^{4} \\
& \text { ว } \overrightarrow{\partial \Phi \partial} \Phi \partial \Phi \Phi
\end{aligned}
$$

Applications - Single Scalar Field

With the help of Mathematica we obtain for $\mathrm{d}=4$ and $\boldsymbol{r}=\mathbf{4}$:

```
h(zz)= ComputeHilbertScalar[d_, k_]:= IntegrateWhole[IntegrandsScalar[d, k]] // AbsoluteTiming
h(32)- (time, resultscalar)= ComputeHilbertScalar [4, 4]
```



```
    -\frac{(1-q\mp@subsup{q}{}{2}\mp@subsup{)}{}{(1-q}|}{(1)x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)}
    16\pi
                                    16 㫌(q}\mp@subsup{q}{}{4}-x(1\mp@subsup{)}{}{4})(\mp@subsup{q}{}{4}x(1\mp@subsup{)}{}{4}-1)(\mp@subsup{q}{}{4}-x(2\mp@subsup{)}{}{4})(\mp@subsup{q}{}{4}x(2\mp@subsup{)}{}{4}-1
```



```
    w intermedite result:{\frac{ix(2)(q+ (q(2)-3q({}{4}(x(2\mp@subsup{)}{}{2}+1)+10\mp@subsup{q}{}{2}x(2)-3q(x(2\mp@subsup{)}{}{2}+1)+x(2))
    * Poles:{(x(2)
    w intermediate result: {\frac{1}{24(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{8(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{4-4\mp@subsup{q}{}{4}},\frac{1}{3(\mp@subsup{q}{}{4}+\mp@subsup{q}{}{2}+1)}},\frac{1}{4-4\mp@subsup{q}{}{4}}
Out[32)={0.443233,}\frac{1}{\mp@subsup{q}{}{10}-\mp@subsup{q}{}{5}-\mp@subsup{q}{}{4}+1}
```

Figure: Calculation of $H_{4}(\mathcal{D} \leftrightarrow q)$ in the accompanying Mathematica notebook.

$$
\begin{aligned}
&\left.H_{4}(\mathcal{D}) \equiv H(\phi, \mathcal{D})\right|_{\phi^{4}}=\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)} \\
&=1+\mathcal{D}^{4}+\mathcal{D}^{6}+\mathcal{D}^{8}+\mathcal{D}^{10}+2 \mathcal{D}^{12}+\cdots \\
& \Phi^{4} \quad \stackrel{\rightharpoonup}{\partial} \Phi \partial \Phi \partial \Phi \Phi \quad \stackrel{\rightharpoonup}{\partial} \Phi \partial \overparen{\partial} \partial \partial \Phi \Phi
\end{aligned}
$$

Applications - Single Scalar Field

With the help of Mathematica we obtain for $\mathrm{d}=4$ and $\boldsymbol{r}=\mathbf{4}$:

```
h(zz)= ComputeHilbertScalar[d_, k_]:= IntegrateWhole[IntegrandsScalar[d, k]] // AbsoluteTiming
h(32)- (time, resultScalar)= ComputeHilbertScalar [4, 4]
```



```
    -\frac{(1-q\mp@subsup{q}{}{2}\mp@subsup{)}{}{(1-q}|}{4})x(1\mp@subsup{)}{}{2}(x(1)-x(2))x(2)(x(1)x(2)-1)
    16\pi
                                    16 㫌(q}\mp@subsup{q}{}{4}-x(1\mp@subsup{)}{}{4})(\mp@subsup{q}{}{4}x(1\mp@subsup{)}{}{4}-1)(\mp@subsup{q}{}{4}-x(2\mp@subsup{)}{}{4})(\mp@subsup{q}{}{4}x(2\mp@subsup{)}{}{4}-1
```



```
    * Poles:{(x(2)
    w intermediate result: {\frac{1}{24(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{8(\mp@subsup{q}{}{2}-1\mp@subsup{)}{}{2}},\frac{1}{4-4\mp@subsup{q}{}{4}},\frac{1}{3(\mp@subsup{q}{}{4}+\mp@subsup{q}{}{2}+1)}},\frac{1}{4-4\mp@subsup{q}{}{4}}
Out[32)={0.443233,}\frac{1}{\mp@subsup{q}{}{10}-\mp@subsup{q}{}{5}-\mp@subsup{q}{}{4}+1}
```

Figure: Calculation of $H_{4}(\mathcal{D} \leftrightarrow q)$ in the accompanying Mathematica notebook.

$$
\begin{aligned}
&\left.H_{4}(\mathcal{D}) \equiv H(\phi, \mathcal{D})\right|_{\phi^{4}}=\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)} \\
&=1+\mathcal{D}^{4}+\mathcal{D}^{6}+\mathcal{D}^{8}+\mathcal{D}^{10}+2 \mathcal{D}^{12}+\cdots \\
& \Phi^{4} \quad \stackrel{\rightharpoonup}{\partial} \Phi \partial \Phi \partial \Phi \Phi \quad \stackrel{\rightharpoonup}{\partial} \Phi \partial \vec{\partial} \Phi \partial \\
& \partial
\end{aligned} \quad \ldots .
$$

Applications - Single Scalar Field

d	$H_{4}(\mathcal{D})$	$H_{5}(\mathcal{D})$
≥ 5		$\frac{1+\mathcal{D}^{12}+\mathcal{D}^{14}+\mathcal{D}^{16}+\mathcal{D}^{18}+\mathcal{D}^{30}}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)\left(1-\mathcal{D}^{8}\right)\left(1-\mathcal{D}^{10}\right)\left(1-\mathcal{D}^{12}\right)}$
4	$\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)}$	$\frac{1+\mathcal{D}^{10}+\mathcal{D}^{12}+2 \mathcal{D}^{14}+2 \mathcal{D}^{16}+\mathcal{D}^{18}+\mathcal{D}^{22}+\mathcal{D}^{24}+\mathcal{D}^{28}+\mathcal{D}^{30}}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)\left(1-\mathcal{D}^{8}\right)\left(1-\mathcal{D}^{10}\right)\left(1-\mathcal{D}^{12}\right)}$
3	$\frac{1+\mathcal{D}^{9}}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)}$	$\frac{1+\mathcal{D}^{9}+\mathcal{D}^{12}+\mathcal{D}^{13}+\mathcal{D}^{14}+2 \mathcal{D}^{15}+\mathcal{D}^{16}+\mathcal{D}^{17}+\mathcal{D}^{18}+\mathcal{D}^{21}+\mathcal{D}^{30}}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)\left(1-\mathcal{D}^{10}\right)\left(1-\mathcal{D}^{12}\right)}$
2	$\frac{1}{1-\mathcal{D}^{4}}$	$\frac{1+\mathcal{D}^{12}}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{12}\right)}$

Table: The Hilbert series for a single scalar field (fixed field content $\Phi^{\mathbf{4}}$ and $\Phi^{\mathbf{5}}$).

Applications - Single Scalar Field

d	$H_{4}(\mathcal{D})$
≥ 5	
4	$\frac{1}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)}$
3	$\frac{1+\mathcal{D}^{10}+\mathcal{D}^{12}+2 \mathcal{D}^{14}+2 \mathcal{D}^{16}+\mathcal{D}^{18}+\mathcal{D}^{22}+\mathcal{D}^{24}+\mathcal{D}^{28}+\mathcal{D}^{30}}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)\left(1-\mathcal{D}^{8}\right)\left(1-\mathcal{D}^{10}\right)\left(1-\mathcal{D}^{12}\right)}$
	$\frac{\left.1+\mathcal{D}^{9}\right)\left(1-\mathcal{D}^{8}\right)\left(1-\mathcal{D}^{10}\right)\left(1-\mathcal{D}^{12}\right)}{\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)}$
2	$\frac{1}{1-\mathcal{D}^{4}}$

Table: The Hilbert series for a single scalar field (fixed field content $\Phi^{\mathbf{4}}$ and $\Phi^{\mathbf{5}}$).

For $\mathrm{d}=3$ we have one additional operator for every one in $\mathrm{d}=4$, but with 9 more derivatives. This corresponds to the operator

$$
\varepsilon^{a b c} \stackrel{\left.\upharpoonright \stackrel{\Gamma}{\left.\partial \partial \partial_{a} \Phi\right)(\partial \partial} \partial \partial_{b} \Phi\right)\left(\partial \partial_{c} \Phi\right)(\Phi) .}{ }
$$

Applications - Single Scalar Field

d	$H_{6}(\mathcal{D})$
≥ 6	$\begin{aligned} & 1+2 \mathcal{D}^{10}+5 \mathcal{D}^{12}+7 \mathcal{D}^{14}+9 \mathcal{D}^{16}+11 \mathcal{D}^{18}+13 \mathcal{D}^{20}+14 \mathcal{D}^{22}+21 \mathcal{D}^{24}+24 \mathcal{D}^{26} \\ & +28 \mathcal{D}^{28}+32 \mathcal{D}^{30}+26 \mathcal{D}^{32}+22 \mathcal{D}^{34}+13 \mathcal{D}^{36}+7 \mathcal{D}^{38}+3 \mathcal{D}^{40}+\mathcal{D}^{42}+\mathcal{D}^{44} \\ & \hline \end{aligned}$
	$\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)^{2}\left(1-\mathcal{D}^{8}\right)^{3}\left(1-\mathcal{D}^{10}\right)^{2}\left(1-\mathcal{D}^{12}\right)$
5	$\begin{gathered} 1+2 \mathcal{D}^{10}+5 \mathcal{D}^{12}+7 \mathcal{D}^{14}+\mathcal{D}^{15}+9 \mathcal{D}^{16}+\mathcal{D}^{17}+11 \mathcal{D}^{18}+3 \mathcal{D}^{19}+13 \mathcal{D}^{20}+7 \mathcal{D}^{21}+14 \mathcal{D}^{22}+13 \mathcal{D}^{23}+21 \mathcal{D}^{24} \\ +222 \mathcal{D}^{25}+24 \mathcal{D}^{26}+26 \mathcal{D}^{27}+28 \mathcal{D}^{28}+32 \mathcal{D}^{29}+32 \mathcal{D}^{30}+28 \mathcal{D}^{31}+26 \mathcal{D}^{32}+24 \mathcal{D}^{33}+22 \mathcal{D}^{34}+21 \mathcal{D}^{35} \\ +13 \mathcal{D}^{36}+14 \mathcal{D}^{37}+7 \mathcal{D}^{38}+13 \mathcal{D}^{39}+3 \mathcal{D}^{40}+11 \mathcal{D}^{41}+\mathcal{D}^{42}+9 \mathcal{D}^{43}+\mathcal{D}^{44}+7 \mathcal{D}^{45}+5 \mathcal{D}^{47}+2 \mathcal{D}^{49}+\mathcal{D}^{59} \\ \hline \end{gathered}$
	$\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)^{2}\left(1-\mathcal{D}^{8}\right)^{3}\left(1-\mathcal{D}^{10}\right)^{2}\left(1-\mathcal{D}^{12}\right)$
4	$\begin{gathered} 1+3 \mathcal{D}^{10}+6 \mathcal{D}^{12}+11 \mathcal{D}^{14}+17 \mathcal{D}^{16}+22 \mathcal{D}^{18}+31 \mathcal{D}^{20}+36 \mathcal{D}^{22}+48 \mathcal{D}^{24}+53 \mathcal{D}^{26}+58 \mathcal{D}^{28} \\ +58 \mathcal{D}^{30}+48 \mathcal{D}^{32}+38 \mathcal{D}^{34}+23 \mathcal{D}^{36}+14 \mathcal{D}^{38}+6 \mathcal{D}^{40}+4 \mathcal{D}^{42}+2 \mathcal{D}^{44}+\mathcal{D}^{46} \\ \hline \end{gathered}$
	$\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)^{2}\left(1-\mathcal{D}^{8}\right)^{3}\left(1-\mathcal{D}^{10}\right)\left(1-\mathcal{D}^{12}\right)$
3	$\begin{gathered} 1+\mathcal{D}^{8}+2 \mathcal{D}^{9}+2 \mathcal{D}^{10}+2 \mathcal{D}^{11}+3 \mathcal{D}^{12}+5 \mathcal{D}^{13}+4 \mathcal{D}^{14}+6 \mathcal{D}^{15}+5 \mathcal{D}^{16}+6 \mathcal{D}^{17}+6 \mathcal{D}^{18}+6 \mathcal{D}^{19}+5 \mathcal{D}^{20}+6 \mathcal{D}^{21}+6 \mathcal{D}^{22} \\ \quad+5 \mathcal{D}^{23}+6 \mathcal{D}^{24}+6 \mathcal{D}^{25}+6 \mathcal{D}^{26}+5 \mathcal{D}^{27}+6 \mathcal{D}^{28}+4 \mathcal{D}^{29}+5 \mathcal{D}^{30}+3 \mathcal{D}^{31}+2 \mathcal{D}^{32}+2 \mathcal{D}^{33}+2 \mathcal{D}^{34}+\mathcal{D}^{35}+\mathcal{D}^{43} \end{gathered}$
	$\left(1-\mathcal{D}^{4}\right)\left(1-\mathcal{D}^{6}\right)^{2}\left(1-\mathcal{D}^{8}\right)\left(1-\mathcal{D}^{10}\right)\left(1-\mathcal{D}^{12}\right)$
2	$1+\mathcal{D}^{4}+\mathcal{D}^{6}+2 \mathcal{D}^{8}+\mathcal{D}^{10}+3 \mathcal{D}^{12}+3 \mathcal{D}^{16}+\mathcal{D}^{18}+\mathcal{D}^{22}$
	$\left(1-\mathcal{D}^{8}\right)\left(1-\mathcal{D}^{12}\right)^{2}$

Table: The Hilbert series for a single scalar field, with a fixed field content $\Phi^{\mathbf{6}}$.

Applications - Single Scalar Field

Figure: Log-log plot of the coefficients of $H_{6}(\mathcal{D})$ in $d=2, \ldots, 6$.

Summary and generalization

Our starting data for any EFT are:

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- Possibly some other constraints.

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:
$\left\{\Phi_{i}\right\}$

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:
$\left\{\Phi_{i}\right\} \xrightarrow[\text { and EOM }]{\stackrel{\bigoplus_{n=0}^{\infty} \mathcal{D}^{n} \partial^{n} \bullet}{\longrightarrow}}$

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:

$$
\left\{\Phi_{i}\right\} \xrightarrow[\text { and EOM }]{\stackrel{\bigoplus_{n=0}^{\infty} \mathcal{D}^{n} \partial^{n} \bullet}{\longmapsto}\{\underbrace{R_{\mathrm{SO}(\mathrm{~d}), \Phi_{i}} \otimes R_{G, \Phi_{i}}}_{R_{\Phi_{i}}}\} \underset{\Phi_{i} \text { is a } \begin{array}{c}
\text { boson } \\
\text { fermion }
\end{array}}{\bigotimes_{i}\left(\bigoplus_{r=0}^{\infty} \phi_{i}^{r} \bigwedge^{r}\left(\bullet_{i}\right)\right.})}
$$

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:

$$
\left\{\Phi_{i}\right\} \xrightarrow[\text { and EOM }]{\bigoplus_{n=0}^{\infty} \mathcal{D}^{n} \partial^{n} \bullet}\{\underbrace{R_{\mathrm{SO}(\mathrm{~d}), \Phi_{i}} \otimes R_{G, \Phi_{i}}}_{R_{\Phi_{i}}}\} \underset{\Phi_{i} \text { is a boson } \begin{array}{l}
\text { bosmion } \\
\text { fermion }
\end{array}}{\substack{\bigotimes_{i}\left(\bigoplus_{r=0}^{\infty} \phi_{i}^{r} \Lambda^{r}\left(\bullet_{i}\right) \\
\Lambda_{i}\right)}}
$$

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:

$$
\begin{aligned}
& \text { the Projection Formula }+ \text { Weyl integration formula }
\end{aligned}
$$

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:

$$
\begin{aligned}
& \text { the Projection Formula }+ \text { Weyl integration formula } \\
& \rightarrow H(\phi, \mathcal{D})=\underbrace{\int_{\mathrm{SO}(\mathrm{~d}) \times G} \frac{1}{P(\mathcal{D} ; g)} \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g}_{H_{0}(\phi, \mathcal{D})}+\Delta H(\phi, \mathcal{D})
\end{aligned}
$$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of A_{\bullet} as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
density has the well-known form

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of A_{\bullet} as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\partial^{a} F_{a b}=0 .
$$

(EOM)

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\begin{equation*}
\partial^{a} F_{a b}=0 . \tag{EOM}
\end{equation*}
$$

Furthermore, $F_{\bullet \bullet}$ automatically satisfies the Bianchi identities due to its definition as the exterior derivative of A_{\bullet}

$$
\begin{equation*}
3 \partial_{[a} F_{b c]}=\mathrm{d}_{a} F_{b c}=\mathrm{d}_{a} \mathrm{~d}_{b} A_{c}=0 \tag{Bianchi}
\end{equation*}
$$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\begin{equation*}
\partial^{a} F_{a b}=0 . \tag{EOM}
\end{equation*}
$$

Furthermore, $F_{\bullet \bullet}$ automatically satisfies the Bianchi identities due to its definition as the exterior derivative of $A \bullet$

$$
\begin{equation*}
3 \partial_{[a} F_{b c]}=\mathrm{d}_{a} F_{b c}=\mathrm{d}_{a} \mathrm{~d}_{b} A_{c}=0 \tag{Bianchi}
\end{equation*}
$$

As a simple consequence of the previous two we have $\partial^{a} \partial_{a} F_{b c}$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\begin{equation*}
\partial^{a} F_{a b}=0 . \tag{EOM}
\end{equation*}
$$

Furthermore, $F_{\bullet \bullet}$ automatically satisfies the Bianchi identities due to its definition as the exterior derivative of A_{\bullet}

$$
\begin{equation*}
3 \partial_{[a} F_{b c]}=\mathrm{d}_{a} F_{b c}=\mathrm{d}_{a} \mathrm{~d}_{b} A_{c}=0 \tag{Bianchi}
\end{equation*}
$$

As a simple consequence of the previous two we have

$$
\partial^{a} \partial_{a} F_{b c}=\partial^{a} \partial_{a} F_{b c}
$$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\begin{equation*}
\partial^{a} F_{a b}=0 . \tag{EOM}
\end{equation*}
$$

Furthermore, $F_{\bullet \bullet}$ automatically satisfies the Bianchi identities due to its definition as the exterior derivative of A_{\bullet}

$$
\begin{equation*}
3 \partial_{[a} F_{b c]}=\mathrm{d}_{a} F_{b c}=\mathrm{d}_{a} \mathrm{~d}_{b} A_{c}=0 \tag{Bianchi}
\end{equation*}
$$

As a simple consequence of the previous two we have
by (EOM)
$\partial^{a} \partial_{a} F_{b c}=\partial^{a} \partial_{a} F_{b c}+\partial^{a} \partial_{c} \Gamma^{\Gamma} a b$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\begin{equation*}
\partial^{a} F_{a b}=0 . \tag{EOM}
\end{equation*}
$$

Furthermore, $F_{\bullet \bullet}$ automatically satisfies the Bianchi identities due to its definition as the exterior derivative of A_{\bullet}

$$
\begin{equation*}
3 \partial_{[a} F_{b c]}=\mathrm{d}_{a} F_{b c}=\mathrm{d}_{a} \mathrm{~d}_{b} A_{c}=0 \tag{Bianchi}
\end{equation*}
$$

As a simple consequence of the previous two we have

> by (EOM) by (EOM)
$\partial^{a} \partial_{a} F_{b c}=\partial^{a} \partial_{a} F_{b c}+\partial^{a} \partial_{c^{\Gamma}{ }^{\Gamma} a b}+\partial^{a} \partial_{b} \bar{F}_{c a}$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\begin{equation*}
\partial^{a} F_{a b}=0 . \tag{EOM}
\end{equation*}
$$

Furthermore, $F_{\bullet \bullet}$ automatically satisfies the Bianchi identities due to its definition as the exterior derivative of A_{\bullet}

$$
\begin{equation*}
3 \partial_{[a} F_{b c]}=\mathrm{d}_{a} F_{b c}=\mathrm{d}_{a} \mathrm{~d}_{b} A_{c}=0 \tag{Bianchi}
\end{equation*}
$$

As a simple consequence of the previous two we have
by (EOM) by (EOM)
$\partial^{a} \partial_{a} F_{b c}=\partial^{a} \partial_{a} F_{b c}+\partial^{a} \partial_{c^{\Gamma}{ }^{\Gamma} a b}+\partial^{a} \partial_{\partial^{\Gamma} \bar{\Gamma}^{\Gamma} c a}=3 \partial^{a} \partial_{[a} F_{b c]}$

Applications - Electromagnetic Field

We take $F_{\bullet \bullet}$ instead of $A \bullet$ as a building block of the Lagrangian density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian density has the well-known form

$$
\mathcal{L}_{\text {kin }}\left(A_{\bullet}, \partial_{\bullet} A_{\bullet}\right) \equiv-\frac{1}{4} F_{a b} F^{a b}
$$

which leads to the free equations of motion

$$
\begin{equation*}
\partial^{a} F_{a b}=0 . \tag{EOM}
\end{equation*}
$$

Furthermore, $F_{\bullet \bullet}$ automatically satisfies the Bianchi identities due to its definition as the exterior derivative of A_{\bullet}

$$
\begin{equation*}
3 \partial_{[a} F_{b c]}=\mathrm{d}_{a} F_{b c}=\mathrm{d}_{a} \mathrm{~d}_{b} A_{c}=0 \tag{Bianchi}
\end{equation*}
$$

As a simple consequence of the previous two we have

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pinanes some of rwhinh wrill bo zowo bw wance of the molationd.

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

$$
\begin{array}{|l|}
\hline F_{\bullet} \\
\hline F_{\bullet \bullet}
\end{array} \otimes \begin{array}{|l|l|l|}
\hline \partial_{\bullet} \\
F_{0} & F_{0} \\
\hline P_{0} \\
\hline
\end{array}
$$

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

$$
\frac{F_{\bullet}}{F_{\cdot 0}}\left|\otimes \partial_{\bullet}=\right| \begin{array}{|c|}
\hline \partial_{0} \\
\hline F_{0} \\
\hline \partial_{\bullet} \\
\hline
\end{array}
$$

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

$$
\begin{array}{|l|}
\hline F_{\bullet} \\
\hline F_{\bullet \bullet} \\
\hline \partial_{\bullet} \\
\hline \partial_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet \bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet} \\
\hline \partial_{\bullet} \\
\hline
\end{array}
$$

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

$$
\begin{array}{|l|}
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \partial_{\bullet} \\
\hline \partial_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \bar{\partial}_{\bullet} \mid \\
\hline F_{\bullet \bullet} \\
\hline
\end{array}
$$

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

$$
\begin{array}{|l|}
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \partial_{\bullet} \\
\hline \partial_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \bar{c}_{\bullet} \mid \\
\hline F_{\bullet \bullet} \\
\hline
\end{array}
$$

Following further, we can find the decomposition of $\partial_{\{a} \partial_{b} F_{[c\} d]}$ as

$$
\begin{array}{|l|l|}
\hline F_{\bullet \cdot} & \partial_{0} \\
\hline F_{.} & \\
\hline
\end{array}
$$

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

$$
\begin{array}{|l|}
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \partial_{\bullet} \\
\hline \partial_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \bar{c}_{\bullet} \mid \\
\hline F_{\bullet \bullet} \\
\hline
\end{array}
$$

Following further, we can find the decomposition of $\partial_{\{a} \partial_{b} F_{[c\} d]}$ as

$$
\begin{array}{|l|l|}
\hline F_{0} & \partial_{0} \\
\hline F_{0} & \otimes \partial_{0} \\
\hline
\end{array}
$$

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

$$
\begin{array}{|l|}
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \partial_{\bullet} \\
\hline \partial_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet} \\
\hline F_{\bullet \bullet} \\
\hline F_{\bullet \bullet} \\
\hline \bar{c}_{\bullet} \mid \\
\hline F_{\bullet \bullet} \\
\hline
\end{array}
$$

Following further, we can find the decomposition of $\partial_{\{a} \partial_{b} F_{[c\} d]}$ as

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

Following further, we can find the decomposition of $\partial_{\{a} \partial_{b} F_{[c\} d]}$ as

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

Following further, we can find the decomposition of $\partial_{\{a} \partial_{b} F_{[c\} d]}$ as

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

Following further, we can find the decomposition of $\partial_{\{a} \partial_{b} F_{[c\} d]}$ as

Applications - Electromagnetic Field

To build R_{F} we repeatedly apply derivatives on $F_{\bullet \bullet}$, but we also need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller pieces, some of which will be zero by usage of the relations.

For example, we can decompose $\partial_{\{a} F_{[b\} c]}$ as

Following further, we can find the decomposition of $\partial_{\{a} \partial_{b} F_{[c\} d]}$ as

Applications - Electromagnetic Field

Calculation (Single Particle Graded Representation R_{F} for the electromagnetic field). We obtain R_{F} of the form

Applications - Electromagnetic Field

Calculation (Single Particle Graded Representation R_{F} for the electromagnetic field). We obtain R_{F} of the form
$R_{F}=\operatorname{Span}\left(\begin{array}{c}F_{[a b]} \\ \partial_{\left\{a_{1}\right.} F_{[a\} b]} \\ \partial_{\left\{a_{1} \partial_{a_{2}} F_{[a\} b]}\right.} \\ \vdots \\ \partial_{\left\{a_{1}\right.} \cdots \partial_{a_{n}} F_{[a\} b]} \\ \vdots\end{array}\right)$

Applications - Electromagnetic Field

Calculation (Single Particle Graded Representation R_{F} for the electromagnetic field). We obtain R_{F} of the form
$R_{F}=\operatorname{Span}\left(\begin{array}{c}F_{[a b]} \\ \partial_{\left\{a_{1}\right.} F_{[a\} b]} \\ \partial_{\left\{a_{1} \partial_{a_{2}} F_{[a\} b]}\right.} \\ \vdots \\ \partial_{\left\{a_{1} \cdots\right.} \cdots \partial_{a_{n}} F_{[a\} b]} \\ \vdots\end{array}\right) \equiv \mathcal{D} \square \oplus \mathcal{D}^{2} \square \oplus \mathcal{D}^{3} \square_{\square}^{\square} \oplus \cdots$

Applications - Electromagnetic Field

Calculation (Single Particle Graded Representation R_{F} for the electromagnetic field). We obtain R_{F} of the form
$R_{F}=\operatorname{Span}\left(\begin{array}{c}F_{[a b]} \\ \partial_{\left\{a_{1}\right.} F_{[a\} b]} \\ \partial_{\left\{a_{1}\right.} \partial_{a_{2}} F_{[a\} b]} \\ \vdots \\ \partial_{\left\{a_{1} \cdots\right.} \cdots \partial_{a_{n}} F_{[a\} b]} \\ \vdots\end{array}\right) \equiv \mathcal{D} \square \oplus \mathcal{D}^{2} \square \oplus \mathcal{D}^{3} \square_{\square}^{\square} \oplus \cdots$
with the graded character ($F_{a b}=\mathrm{d}_{a} A_{b}$ contains one derivative)

$$
\chi_{R_{F}}(\mathcal{D} ; \boldsymbol{x}) \equiv \mathcal{D} \chi_{\boxminus}(\boldsymbol{x})+\mathcal{D}^{2} \chi_{\square}(\boldsymbol{x})+\mathcal{D}^{3} \chi_{\square \square}(\boldsymbol{x})+\cdots
$$

Applications - Electromagnetic Field

Calculation (Single Particle Graded Representation R_{F} for the electromagnetic field). We obtain R_{F} of the form
$R_{F}=\operatorname{Span}\left(\begin{array}{c}F_{[a b]} \\ \partial_{\left\{a_{1}\right.} F_{[a\} b]} \\ \partial_{\left\{a_{1}\right.} \partial_{a_{2}} F_{[a\} b]} \\ \vdots \\ \partial_{\left\{a_{1} \cdots\right.} \cdots \partial_{a_{n}} F_{[a\} b]} \\ \vdots\end{array}\right) \equiv \mathcal{D} \square \oplus \mathcal{D}^{2} \square \oplus \mathcal{D}^{3} \square_{\square}^{\square} \oplus \cdots$
with the graded character ($F_{a b}=\mathrm{d}_{a} A_{b}$ contains one derivative)

$$
\begin{aligned}
\chi_{R_{F}}(\mathcal{D} ; \boldsymbol{x}) & \equiv \mathcal{D} \chi_{\square}(\boldsymbol{x})+\mathcal{D}^{2} \chi_{\square}(\boldsymbol{x})+\mathcal{D}^{3} \chi_{\square \square}(\boldsymbol{x})+\cdots \\
& =\frac{\left(\left(\mathcal{D}-\mathcal{D}^{3}\right) \chi_{\square}(\boldsymbol{x})-\left(1-\mathcal{D}^{4}\right)\right) P(\mathcal{D} ; \boldsymbol{x})+1}{\mathcal{D}}
\end{aligned}
$$

Applications - Electromagnetic Field

d	$\frac{1}{\mathcal{D}^{4}} H_{F^{4}}(\mathcal{D})$	miscount

Table: The Hilbert series for the electromagnetic field (with $F^{\mathbf{4}}$ and $F^{\mathbf{5}}$).

Summary and generalization

Our starting data for any EFT are:

- Particle fields $\left\{\Phi_{i}\right\}$ together with their representations under the Lorentz group $\mathrm{SO}(\mathrm{d})$ and the internal group G.
- EOM generated from the kinetic Lagrangian density $\mathcal{L}_{\text {kin }}$.
- Possibly some other constraints.

The Hilbert series is then calculated as:

$$
\begin{aligned}
& \text { the Projection Formula }+ \text { Weyl integration formula } \\
& \rightarrow H(\phi, \mathcal{D})=\underbrace{\int_{\mathrm{SO}(\mathrm{~d}) \times G} \frac{1}{P(\mathcal{D} ; g)} \chi_{\mathcal{J}}(\phi, \mathcal{D} ; g) d g}_{H_{0}(\phi, \mathcal{D})}+\Delta H(\phi, \mathcal{D})
\end{aligned}
$$

Graded representations

It is hopeless to work with one operator at a time, not only efficiency-wise, but also due to IBP relations between them.

Definition (Graded representation). Representation
called a graded representation if it has the form of

Example (Tensor, symmetric, and exterior graded representations).
Let V be a representation of G. We define the tensor, symmetric, and

Graded representations

It is hopeless to work with one operator at a time, not only efficiency-wise, but also due to IBP relations between them.

Definition (Graded representation). Representation V of G is called a graded representation if it has the form of

$$
V \equiv \bigoplus_{n=0}^{\infty} t^{n} V_{n}
$$

where V_{n} is a finite-dimensional representation $\forall n \in \mathbb{N}_{0}$.

Graded representations

It is hopeless to work with one operator at a time, not only efficiency-wise, but also due to IBP relations between them.

Definition (Graded representation). Representation V of G is called a graded representation if it has the form of

$$
V \equiv \bigoplus_{n=0}^{\infty} t^{n} V_{n}
$$

where V_{n} is a finite-dimensional representation $\forall n \in \mathbb{N}_{0}$.
Example (Tensor, symmetric, and exterior graded representations). Let V be a representation of G. We define the tensor, symmetric, and exterior graded representations of V, respectively, as

$$
T(V) \equiv \bigoplus_{n=0}^{\infty} t^{n} V^{\otimes n}, \quad S(V) \equiv \bigoplus_{n=0}^{\infty} t^{n} S^{n}(V), \quad \bigwedge(V) \equiv \bigoplus_{n=0}^{\operatorname{dim} V} t^{n} \bigwedge^{n}(V)
$$

Graded dimensions

Definition (Graded dimension). The graded dimension $\operatorname{dim}_{t} V$ is a formal series in a complex parameter t defined by

$$
\operatorname{dim}_{t} V \equiv \sum_{n=0}^{\infty} t^{n} \operatorname{dim} V_{n}
$$

Graded dimensions

Definition (Graded dimension). The graded dimension $\operatorname{dim}_{t} V$ is a formal series in a complex parameter t defined by

$$
\operatorname{dim}_{t} V \equiv \sum_{n=0}^{\infty} t^{n} \operatorname{dim} V_{n}
$$

Remark $(H(\boldsymbol{\phi}, \mathcal{D})$ as a graded dimension of $\mathcal{K}=\operatorname{Span} \mathcal{B})$.

Graded dimensions

Definition (Graded dimension). The graded dimension $\operatorname{dim}_{t} V$ is a formal series in a complex parameter t defined by

$$
\operatorname{dim}_{t} V \equiv \sum_{n=0}^{\infty} t^{n} \operatorname{dim} V_{n}
$$

Remark $(H(\boldsymbol{\phi}, \mathcal{D})$ as a graded dimension of $\mathcal{K}=\operatorname{Span} \mathcal{B})$. The space $\operatorname{Span} \mathcal{B}$ can be understood as a graded representation of the Lorentz (and possibly gauge) group. Every graded piece is composed of trivial representations, since all operators in \mathcal{B} must be invariant.

Graded dimensions

Definition (Graded dimension). The graded dimension $\operatorname{dim}_{t} V$ is a formal series in a complex parameter t defined by

$$
\operatorname{dim}_{t} V \equiv \sum_{n=0}^{\infty} t^{n} \operatorname{dim} V_{n}
$$

Remark $(H(\phi, \mathcal{D})$ as a graded dimension of $\mathcal{K}=\operatorname{Span} \mathcal{B})$. The space $\operatorname{Span} \mathcal{B}$ can be understood as a graded representation of the Lorentz (and possibly gauge) group. Every graded piece is composed of trivial representations, since all operators in \mathcal{B} must be invariant. If we choose appropriate grading, we recognize that

$$
\operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{K}=H(\phi, \mathcal{D})
$$

The coefficients of $H(\boldsymbol{\phi}, \mathcal{D})$ are thus denoted as $d_{r n}$, because they are the dimensions of the corresponding graded pieces.

Graded characters

Proposition (Selected graded characters). The following graded characters of are given by:

$$
\chi_{T(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{V^{\otimes n}}(g)=\frac{1}{1-t \operatorname{Tr}\left(\left.g\right|_{V}\right)} \equiv \frac{1}{1-t \chi_{V}(g)}
$$

Graded characters

Proposition (Selected graded characters). The following graded characters of are given by:

$$
\begin{aligned}
& \chi_{T(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{V^{\otimes n}}(g)=\frac{1}{1-t \operatorname{Tr}\left(\left.g\right|_{V}\right)} \equiv \frac{1}{1-t \chi_{V}(g)} \\
& \chi_{S(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{S^{n}(V)}(g)=\frac{1}{\operatorname{det}\left(\mathbf{1}-\left.t g\right|_{V}\right)} \equiv \operatorname{PE}\left[t \chi_{V}(q ; g)\right]
\end{aligned}
$$

Graded characters

Proposition (Selected graded characters). The following graded characters of are given by:

$$
\begin{aligned}
& \chi_{T(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{V^{\otimes n}}(g)=\frac{1}{1-t \operatorname{Tr}\left(\left.g\right|_{V}\right)} \equiv \frac{1}{1-t \chi_{V}(g)} \\
& \chi_{S(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{S^{n}(V)}(g)=\frac{1}{\operatorname{det}\left(\mathbf{1}-\left.t g\right|_{V}\right)} \equiv \operatorname{PE}\left[t \chi_{V}(q ; g)\right] \\
& \chi_{\bigwedge(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{\bigwedge^{n}(V)}(g)=\operatorname{det}\left(\mathbf{1}+\left.t g\right|_{V}\right) \equiv \operatorname{PE}_{f}\left[t \chi_{V}(q ; g)\right]
\end{aligned}
$$

Graded characters

Proposition (Selected graded characters). The following graded characters of are given by:

$$
\begin{aligned}
& \chi_{T(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{V^{\otimes n}}(g)=\frac{1}{1-t \operatorname{Tr}\left(\left.g\right|_{V}\right)} \equiv \frac{1}{1-t \chi_{V}(g)} \\
& \chi_{S(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{S^{n}(V)}(g)=\frac{1}{\operatorname{det}\left(\mathbf{1}-\left.t g\right|_{V}\right)} \equiv \operatorname{PE}\left[t \chi_{V}(q ; g)\right] \\
& \chi_{\bigwedge(V)}(t ; g)=\sum_{n=0}^{\infty} t^{n} \chi_{\Lambda^{n}(V)}(g)=\operatorname{det}\left(\mathbf{1}+\left.t g\right|_{V}\right) \equiv \operatorname{PE}_{f}\left[t \chi_{V}(q ; g)\right]
\end{aligned}
$$

Remark. Graded characters are reminiscent of partition functions found in statistical mechanics (the grand-canonical partition functions for Bose-Einstein/Fermi-Dirac ideal quantum gases)

$$
\mathcal{Z}_{g}=\prod_{n}\left[1 \mp e^{-\beta\left(E_{n}-\mu\right)}\right]^{\mp} \equiv \prod_{n}\left[1 \mp z e^{-\beta E_{n}}\right]^{\mp}
$$

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

For two functions α, β (either one can be bosonic or fermionic) the Plethystic Exponential satisfies the sum-to-product property

$$
\mathrm{PE}_{f}[\alpha+\beta]=\mathrm{PE}_{f}[\alpha] \mathrm{PE}_{f}[\beta] .
$$

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

For two functions α, β (either one can be bosonic or fermionic) the Plethystic Exponential satisfies the sum-to-product property

$$
\mathrm{PE}_{f}[\alpha+\beta]=\mathrm{PE}_{f}[\alpha] \mathrm{PE}_{f}[\beta] .
$$

One simple example is $\alpha(t, q) \equiv t$ and $\beta(t, q) \equiv q$, for which it generates all antisymmetric combinations of the variables, that is

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

For two functions α, β (either one can be bosonic or fermionic) the Plethystic Exponential satisfies the sum-to-product property

$$
\mathrm{PE}_{f}[\alpha+\beta]=\mathrm{PE}_{f}[\alpha] \mathrm{PE}_{f}[\beta] .
$$

One simple example is $\alpha(t, q) \equiv t$ and $\beta(t, q) \equiv q$, for which it generates all antisymmetric combinations of the variables, that is

$$
\mathrm{PE}_{f}[t+q]
$$

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

For two functions α, β (either one can be bosonic or fermionic) the Plethystic Exponential satisfies the sum-to-product property

$$
\mathrm{PE}_{f}[\alpha+\beta]=\mathrm{PE}_{f}[\alpha] \mathrm{PE}_{f}[\beta] .
$$

One simple example is $\alpha(t, q) \equiv t$ and $\beta(t, q) \equiv q$, for which it generates all antisymmetric combinations of the variables, that is

$$
\mathrm{PE}_{f}[t+q]=\left\{\begin{array}{l}
\frac{1}{(1-t)(1-q)}
\end{array}\right.
$$

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

For two functions α, β (either one can be bosonic or fermionic) the Plethystic Exponential satisfies the sum-to-product property

$$
\mathrm{PE}_{f}[\alpha+\beta]=\mathrm{PE}_{f}[\alpha] \mathrm{PE}_{f}[\beta] .
$$

One simple example is $\alpha(t, q) \equiv t$ and $\beta(t, q) \equiv q$, for which it generates all antisymmetric combinations of the variables, that is

$$
\mathrm{PE}_{f}[t+q]=\left\{\begin{array}{l}
\frac{1}{(1-t)(1-q)}=1+t+q+t^{2}+t q+q^{2}+\cdots,
\end{array}\right.
$$

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

For two functions α, β (either one can be bosonic or fermionic) the Plethystic Exponential satisfies the sum-to-product property

$$
\mathrm{PE}_{f}[\alpha+\beta]=\mathrm{PE}_{f}[\alpha] \mathrm{PE}_{f}[\beta] .
$$

One simple example is $\alpha(t, q) \equiv t$ and $\beta(t, q) \equiv q$, for which it generates all antisymmetric combinations of the variables, that is

$$
\mathrm{PE}_{f}[t+q]=\left\{\begin{array}{l}
\frac{1}{(1-t)(1-q)}=1+t+q+t^{2}+t q+q^{2}+\cdots \\
(1+t)(1+q)
\end{array}\right.
$$

Plethystic exponential

Remark (Plethystic Exponential). For a function $\alpha\left(t_{1}, \ldots, t_{k}\right)$ with $\alpha(0, \ldots, 0)=0$ we have the (fermionic) Plethystic Exponential

$$
\mathrm{PE}_{f}\left[\alpha\left(t_{1}, \ldots, t_{k}\right)\right] \equiv \exp \left(\sum_{r=1}^{\infty}(-1)^{r+1} \frac{1}{r} \alpha\left(t_{1}^{r}, \ldots, t_{k}^{r}\right)\right)
$$

For two functions α, β (either one can be bosonic or fermionic) the Plethystic Exponential satisfies the sum-to-product property

$$
\mathrm{PE}_{f}[\alpha+\beta]=\mathrm{PE}_{f}[\alpha] \mathrm{PE}_{f}[\beta] .
$$

One simple example is $\alpha(t, q) \equiv t$ and $\beta(t, q) \equiv q$, for which it generates all antisymmetric combinations of the variables, that is

$$
\mathrm{PE}_{f}[t+q]=\left\{\begin{array}{l}
\frac{1}{(1-t)(1-q)}=1+t+q+t^{2}+t q+q^{2}+\cdots \\
(1+t)(1+q)=1+t+q+t q
\end{array}\right.
$$

Weyl integration formula

Theorem (Weyl integration formula). Let f be a class function on a connected compact Lie group G of rank r with a maximal torus T parametrized by $\boldsymbol{x} \equiv\left(x_{1}, \ldots, x_{\mathrm{r}}\right)$. Then we have

$$
\int_{G} f(g) d g=\oiint_{\left|x_{i}\right|=1} f(\boldsymbol{x}) \underbrace{\left[\prod_{\boldsymbol{\alpha} \in \mathrm{R}_{+}(G)}\left(1-\boldsymbol{x}^{\boldsymbol{\alpha}}\right)\right]}_{\mathfrak{D}_{G}^{+}(\boldsymbol{x})}\left[\prod_{i} \frac{d x_{i}}{2 \pi i x_{i}}\right]
$$

where $\mathrm{R}_{+}(G)$ is the set of so-called positive roots.

Weyl integration formula

Theorem (Weyl integration formula). Let f be a class function on a connected compact Lie group G of rank r with a maximal torus T parametrized by $\boldsymbol{x} \equiv\left(x_{1}, \ldots, x_{\mathrm{r}}\right)$. Then we have

$$
\int_{G} f(g) d g=\oiint_{\left|x_{i}\right|=1} f(\boldsymbol{x}) \underbrace{\left[\prod_{\boldsymbol{\alpha} \in \mathrm{R}_{+}(G)}\left(1-\boldsymbol{x}^{\boldsymbol{\alpha}}\right)\right]}_{\mathfrak{D}_{G}^{+}(\boldsymbol{x})}\left[\prod_{i} \frac{d x_{i}}{2 \pi i x_{i}}\right],
$$

where $\mathrm{R}_{+}(G)$ is the set of so-called positive roots.
Specifically, for $G=\mathrm{SO}(\mathrm{d})$ we have explicit forms

$$
\mathfrak{D}_{\text {SO(d) }}^{+}(\boldsymbol{x})= \begin{cases}\prod_{1 \leq i<j \leq \mathrm{r}}\left(1-x_{i} x_{j}\right)\left(1-x_{i} / x_{j}\right) & \text { for } \mathrm{d}=2 \mathrm{r}, \\ \prod_{i=1}^{r}\left(1-x_{i}\right) \prod_{1 \leq i<j \leq r}\left(1-x_{i} x_{j}\right)\left(1-x_{i} / x_{j}\right) & \text { for } \mathrm{d}=2 \mathrm{r}+1 .\end{cases}
$$

Maximal torus of $\mathrm{SO}(\mathrm{d})$

The maximal torus of $\mathrm{SO}(2 \boldsymbol{r}+1)$ is

$$
T_{\mathrm{SO}(\mathrm{~d})}=\underbrace{\mathrm{SO}(2) \times \cdots \times \mathrm{SO}(2)}_{\mathrm{r}} \cong\left(S^{1}\right)^{r} .
$$

Alternatively, we can parametrize by r complex variables on the unit circle namely hy $\boldsymbol{r}=\left(r_{1}\right.$

Maximal torus of $\mathrm{SO}(\mathrm{d})$

The maximal torus of $\mathrm{SO}(2 r+1)$ is

$$
T_{\mathrm{SO}(\mathrm{~d})}=\underbrace{\mathrm{SO}(2) \times \cdots \times \mathrm{SO}(2)}_{\mathrm{r}} \cong\left(S^{1}\right)^{r} .
$$

In the standard representation $\square \equiv \mathbb{C}^{d} \equiv \mathbb{C}^{2 r+1}$ we have
$T=\left\{\left.\left(\begin{array}{rrrrrr}\cos \theta_{1} & -\sin \theta_{1} & & & \\ \sin \theta_{1} & \cos \theta_{1} & & & \\ & & \ddots & & & \\ & & & \begin{array}{c}\cos \theta_{r} \\ \sin \theta_{r}\end{array} & -\sin \theta_{r} & \cos \theta_{r} \\ & & & & & 1\end{array}\right) \right\rvert\, \begin{array}{l} \\ \\ \end{array}\right.$
Alternatively, we can

Maximal torus of $\mathrm{SO}(\mathrm{d})$

The maximal torus of $\mathrm{SO}(2 r+1)$ is

$$
T_{\mathrm{SO}(\mathrm{~d})}=\underbrace{\mathrm{SO}(2) \times \cdots \times \mathrm{SO}(2)}_{r} \cong\left(S^{1}\right)^{r}
$$

In the standard representation $\square \equiv \mathbb{C}^{d} \equiv \mathbb{C}^{2 r+1}$ we have

Alternatively, we can parametrize by r complex variables on the unit circle, namely by $\boldsymbol{x} \equiv\left(x_{1}, \ldots, x_{\mathrm{r}}\right) \equiv\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{\mathrm{r}}}\right)$.

Characters of SO(d)

Since characters are class functions, and every element can be conjugated to the maximal torus, to evaluate $\chi(g)$ it is enough to specify it for any corresponding torus element $\boldsymbol{x} \leftrightarrow g$.

Using the parametrization introduced previously we obtain

Characters of SO(d)

Since characters are class functions, and every element can be conjugated to the maximal torus, to evaluate $\chi(g)$ it is enough to specify it for any corresponding torus element $\boldsymbol{x} \leftrightarrow g$.

Using the parametrization introduced previously we obtain

$$
\chi_{\square}(\boldsymbol{x})=\left\{\begin{aligned}
2 \sum_{i=1}^{r} \cos \left(\theta_{i}\right)= & \sum_{i=1}^{r}\left(x_{i}+\frac{1}{x_{i}}\right)
\end{aligned} \quad \text { for } \mathrm{d}=2 \mathrm{r}, ~ 子 \begin{array}{rl}
\mathrm{r} \\
1+2 \sum_{i=1}^{r} \cos \left(\theta_{i}\right)=1+\sum_{i=1}^{r}\left(x_{i}+\frac{1}{x_{i}}\right) & \text { for } \mathrm{d}=2 \mathrm{r}+1
\end{array}\right.
$$

Characters of SO(d)

Since characters are class functions, and every element can be conjugated to the maximal torus, to evaluate $\chi(g)$ it is enough to specify it for any corresponding torus element $\boldsymbol{x} \leftrightarrow g$.

Using the parametrization introduced previously we obtain

$$
\chi_{\square}(\boldsymbol{x})=\left\{\begin{aligned}
& 2 \sum_{i=1}^{r} \cos \left(\theta_{i}\right)= \sum_{i=1}^{r}\left(x_{i}+\frac{1}{x_{i}}\right) \\
& \text { for } \mathrm{d}=2 \mathrm{r} \\
& 1+2 \sum_{i=1}^{r} \cos \left(\theta_{i}\right)=1+\sum_{i=1}^{r}\left(x_{i}+\frac{1}{x_{i}}\right) \text { for } \mathrm{d}=2 \mathrm{r}+1
\end{aligned}\right.
$$

Eigenvalues of the torus element $\boldsymbol{x} \leftrightarrow g$ are $\left\{x_{i}, 1 / x_{i}, 1\right\}_{i=1}^{r}$, so

Characters of $\mathrm{SO}(\mathrm{d})$

Since characters are class functions, and every element can be conjugated to the maximal torus, to evaluate $\chi(g)$ it is enough to specify it for any corresponding torus element $\boldsymbol{x} \leftrightarrow g$.

Using the parametrization introduced previously we obtain

$$
\chi_{\square}(\boldsymbol{x})=\left\{\begin{aligned}
& 2 \sum_{i=1}^{r} \cos \left(\theta_{i}\right)= \sum_{i=1}^{r}\left(x_{i}+\frac{1}{x_{i}}\right) \\
& \text { for } d=2 \mathrm{r} \\
& 1+2 \sum_{i=1}^{r} \cos \left(\theta_{i}\right)=1+\sum_{i=1}^{r}\left(x_{i}+\frac{1}{x_{i}}\right) \text { for } d=2 r+1
\end{aligned}\right.
$$

Eigenvalues of the torus element $\boldsymbol{x} \leftrightarrow g$ are $\left\{x_{i}, 1 / x_{i}, 1\right\}_{i=1}^{r}$, so

$$
\underbrace{\chi_{S(\square)}(t ; \boldsymbol{x})}_{P(t ; \boldsymbol{x})}=\left\{\begin{array}{cl}
\prod_{i=1}^{r} \frac{1}{\left(1-t x_{i}\right)\left(1-t / x_{i}\right)} & \text { for } \mathrm{d}=2 \mathrm{r}, \\
\frac{1}{1-t} \prod_{i=1}^{r} \frac{1}{\left(1-t x_{i}\right)\left(1-t / x_{i}\right)} & \text { for } \mathrm{d}=2 \mathrm{r}+1 .
\end{array}\right.
$$

Projection factor

Derivation（Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations）． We can obtain a nice alternative expression as

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
H_{0}(\phi, \mathcal{D})
$$

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
H_{0}(\phi, \mathcal{D}) \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]}
$$

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]} \\
& \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{k}(\square), \mathcal{J}\right)
\end{aligned}
$$

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]} \\
& \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{k}(\square), \mathcal{J}\right) \\
& =\operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigoplus_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \bigwedge^{k}(\square), \mathcal{J}\right)
\end{aligned}
$$

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]} \\
& \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{k}(\square), \mathcal{J}\right) \\
& =\operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigoplus_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \bigwedge^{k}(\square), \mathcal{J}\right) \\
& \equiv \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{-}(\square), \mathcal{J}\right),
\end{aligned}
$$

where $\bigwedge^{-}(\square)$ is the exterior graded representation of \square, but with alternating signs in the grading.

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]} \\
& \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{k}(\square), \mathcal{J}\right) \\
& =\operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigoplus_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \bigwedge^{k}(\square), \mathcal{J}\right) \\
& \equiv \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{-}(\square), \mathcal{J}\right),
\end{aligned}
$$

where $\bigwedge^{-}(\square)$ is the exterior graded representation of \square, but with alternating signs in the grading. Its graded character is

$$
\chi_{\bigwedge^{-}(\square)}(\mathcal{D} ; g)
$$

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]} \\
& \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{k}(\square), \mathcal{J}\right) \\
& =\operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigoplus_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \bigwedge^{k}(\square), \mathcal{J}\right) \\
& \equiv \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{-}(\square), \mathcal{J}\right),
\end{aligned}
$$

where $\bigwedge^{-}(\square)$ is the exterior graded representation of \square, but with alternating signs in the grading. Its graded character is

$$
\chi_{\bigwedge^{(}(\square)}(\mathcal{D} ; g) \equiv \operatorname{det}_{\square}(1-\mathcal{D} g)
$$

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]} \\
& \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{k}(\square), \mathcal{J}\right) \\
& =\operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigoplus_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \bigwedge^{k}(\square), \mathcal{J}\right) \\
& \equiv \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{-}(\square), \mathcal{J}\right),
\end{aligned}
$$

where $\bigwedge^{-}(\square)$ is the exterior graded representation of \square, but with alternating signs in the grading. Its graded character is

$$
\chi_{\bigwedge^{-}(\square)}(\mathcal{D} ; g) \equiv \operatorname{det}_{\square}(1-\mathcal{D} g)=\frac{1}{\chi_{S(\square)}(\mathcal{D} ; g)}
$$

Projection factor

Derivation (Projection factor $1 / P(\mathcal{D} ; g)$ addressing IBP relations). We can obtain a nice alternative expression as

$$
\begin{aligned}
H_{0}(\phi, \mathcal{D}) & \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \mathcal{J}_{[k]} \\
& \equiv \sum_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{k}(\square), \mathcal{J}\right) \\
& =\operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigoplus_{k=0}^{\mathrm{d}}(-\mathcal{D})^{k} \bigwedge^{k}(\square), \mathcal{J}\right) \\
& \equiv \operatorname{dim}_{(\phi, \mathcal{D})} \operatorname{Hom}_{\mathrm{SO}(\mathrm{~d})}\left(\bigwedge^{-}(\square), \mathcal{J}\right),
\end{aligned}
$$

where $\bigwedge^{-}(\square)$ is the exterior graded representation of \square, but with alternating signs in the grading. Its graded character is

$$
\chi_{\bigwedge^{-}(\square)}(\mathcal{D} ; g) \equiv \operatorname{det}_{\square}(1-\mathcal{D} g)=\frac{1}{\chi_{S(\square)}(\mathcal{D} ; g)} \equiv \frac{1}{P(\mathcal{D} ; g)}
$$

