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Effective Field Theory Action

An effective approximation to a given more fundamental theory
(may not be actually known) can be obtained by
(1) choosing a subset of particle fields {Φi},
(2) constructing the most general effective action consistent

with locality, Lorentz invariance and additional symmetries,

Seff[{Φi}] =
ˆ

M
ddx

Lkin +
∑

j

cj

Λ∆j−d Oj

,

(3) and finally determining (matching) the coefficients cj .

• We can choose different sets of operators {Oj}.
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Relations Between Operators
Not all operators are independent.

Definition (Operator relations). Operators Om and On are
considered equivalent (denoted by Om ∼ On), if they satisfy:

(a) Equations of motion — EOM

∃ O′, Φj : Om = On + δSkin
δΦj

O′

(b) Integration by parts — IBP
(´

M ∂ · O =
´

∂M O = 0
)

∃ O′ : Om = On + ∂ · O′

(c) Gram determinant conditions — GDC

∃ O′
∣∣∣
d

{
= 0 for d = dim M
̸= 0 for a general d

}
: Om = On + O′

∣∣∣
dim M
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Example — Single Scalar Field Φ

Lkin = 1
2(∂aΦ)(∂aΦ) = 1

2(∂Φ)(∂Φ) =⇒ □Φ ≡ ∂∂Φ ∼ 0

Example (EOM and IBP).

Example (GDC). Consider d = 2.

0 != ∂[a∂aΦ∂b∂bΦ∂c]∂cΦ

= ∂a∂aΦ∂b∂bΦ∂c∂cΦ +

2∂b∂aΦ∂c∂bΦ∂a∂cΦ︷ ︸︸ ︷
∂c∂aΦ∂a∂bΦ∂b∂cΦ + ∂b∂aΦ∂c∂bΦ∂a∂cΦ

−∂b∂aΦ∂a∂bΦ∂c∂cΦ − ∂c∂aΦ∂b∂bΦ∂a∂cΦ − ∂a∂aΦ∂c∂bΦ∂b∂cΦ︸ ︷︷ ︸
−3∂a∂bΦ∂a∂bΦ∂c∂cΦ

=⇒ 0 != ∂∂Φ∂∂Φ∂∂Φ + 2∂∂Φ∂∂Φ∂∂Φ − 3∂∂Φ∂∂Φ∂∂Φ
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Example — Single Scalar Field Φ
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)
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The Operator Basis and the Hilbert Series

Definition (Operator basis). The operator basis B of the EFT
is a minimal set of operators leading to all possible physical
phenomena in the realm of the EFT.

In general it is hard to construct B. An easier step is to at least
count independent operators of different types.

Definition (Hilbert series). The Hilbert series is a formal series

H(ϕ, D) =
∑

r

∞∑
n=0

drnϕrDn,

where drn ≡ dr1...rN n ∈ N0 is the number of independent
operators in the operator basis B of the type ∂nΦr.
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Example — N Scalar Fields {Φi} in d = 1
(1) No relations. Rather trivial, because the operator basis can

be easily guessed. It is freely generated by the set {∂nΦi}
with i = 1, . . . , N and n ∈ N0. It is easy to see that every
operator is obtained precisely once in the expansion of

N∏
i=1

(1 + Φi + Φ2
i + . . .)(1 + ∂Φi + (∂Φi)2 + . . .)×

×(1 + ∂2Φi + (∂2Φi)2 + . . .)(1 + ∂3Φi + . . .) · · ·

=
N∏

i=1

1
(1 − Φi)(1 − ∂Φi)(1 − ∂2Φi) · · ·

=
N∏

i=1

∞∏
n=0

1
1 − ∂nΦi

.

The corresponding free Hilbert series is obtained by
substituting (Φi, ∂) for their corresponding labels (ϕi, D),

H free
N (ϕ, D) =

∑
r

∞∑
n=0

dfree
rn ϕrDn =

N∏
i=1

∞∏
n=0

1
1 − Dnϕi

.
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Example — N Scalar Fields {Φi} in d = 1
The kinetic Lagrangian density of N scalar fields in d = 1 is

Lkin({Φi, ∂Φi}) ≡
N∑

i=1

1
2(∂Φi)2.

(2) Only EOM relations. Considering the kinetic Lagrangian
density Lkin, the (free) EOM relations are ∂2Φi = 0.

We even have ∂nΦi = 0 for n ≥ 2, so the operator basis is
now freely and finitely generated by the set {Φi, ∂Φi}N

i=1,
giving us the EOM Hilbert series of the form

HEOM
N (ϕ, D) =

N∏
i=1

1
(1 − ϕi)(1 − Dϕi)

.
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Example — N Scalar Fields {Φi} in d = 1
(3) Only IBP relations. One particular example in the case of

only one field flavor would be

0 ∼ ∂
(
(∂n−1Φ)Φk

)
= (∂nΦ)Φk + k(∂n−1Φ)(∂Φ)Φk−1.

So for r ̸= 0 we have dIBP
rn = dfree

rn − dfree
rn−1 (and dIBP

0n = δ0n).

A simple reordering of the summation gives us∑
r

∞∑
n=0

dIBP
rn ϕrDn = 1 +

∑
r ̸=0

∞∑
n=0

(dfree
rn − dfree

rn−1)ϕrDn =

1 + (1 − D)
∑
r ̸=0

∞∑
n=0

dfree
rn ϕrDn = D + (1 − D)H free

N (D, {ϕi}).

Again, the IBP Hilbert series is given by a straightforward
modification of the free Hilbert series as

HIBP
N (ϕ, D) = D + (1 − D)

N∏
i=1

∞∏
n=0

1
1 − Dnϕi

.
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rn = dfree

rn − dfree
rn−1 (and dIBP

0n = δ0n).

A simple reordering of the summation gives us∑
r

∞∑
n=0

dIBP
rn ϕrDn = 1 +

∑
r ̸=0

∞∑
n=0

(dfree
rn − dfree

rn−1)ϕrDn =

1 + (1 − D)
∑
r ̸=0

∞∑
n=0

dfree
rn ϕrDn = D + (1 − D)H free

N (D, {ϕi}).

Again, the IBP Hilbert series is given by a straightforward
modification of the free Hilbert series as

HIBP
N (ϕ, D) = D + (1 − D)

N∏
i=1

∞∏
n=0

1
1 − Dnϕi

.
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Example — N Scalar Fields {Φi} in d = 1
(4) Both EOM and IBP relations. Interplay of both types of

relations makes this problem harder (and thus interesting).
It is still possible to find analytic expression by techniques
similar to those we will present in the following, see

B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert se-
ries and operator bases with derivatives in effective field theories,
Communications in Mathematical Physics, 2015, no. 2, doi:
10.1007/s00220-015-2518-2. arXiv: 1507.07240 [hep-th]

Only in d = 1 the Lorentz group is trivial and the application of
the derivatives is always unambiguous.

From now on, we always assume d ≥ 2, where each derivative
carries an index with non-trivial transformation properties.
To construct a Lorentz invariant operator, we are forced to
contract all the indices (similarly for internal symmetries).

https://doi.org/10.1007/s00220-015-2518-2
https://arxiv.org/abs/1507.07240
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What about d ≥ 2?
Usually there are multiple possibilities how to contract all indices
(and they rapidly grow with the number of derivatives). Together
with non-trivial relations this brings substantial complexity.

Challenge. Try to guess the number of independent operators of
the type ∂nΦ4 for n = 2, 4, 6, 8, 10, 12, . . . in d = 4.

∂Φ∂∂Φ∂∂Φ∂Φ ∂∂Φ∂∂Φ∂Φ∂Φ ∂∂Φ∂∂Φ∂Φ∂Φ

∂∂∂Φ∂∂Φ∂ΦΦ ∂∂Φ∂∂Φ∂∂ΦΦ ∂∂∂Φ∂Φ∂Φ∂Φ

How do we obtain the Hilbert series in a more general
setting, for an arbitrary dimension and field content?

B. Henning, X. Lu, T. Melia, and H. Murayama,
Operator bases, S-matrices, and their partition functions,
Journal of High Energy Physics, 2017, no. 10, doi:
10.1007/jhep10(2017)199. arXiv: 1706.08520 [hep-th]

https://doi.org/10.1007/jhep10(2017)199
https://arxiv.org/abs/1706.08520
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Representations of Lie Groups

Idea: Construct the representation of all operators, and then
project out only independent Lorentz invariant ones.

G
e

g ρ
v′vρ(g)

v′v

V

ρ(g)

Figure: A representation ρ of a group G on a vector space V . A group
element g ∈ G is represented by a linear operator ρ(g) ∈ GL(V ).
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The Projection Formula

v
V

gv
e

g VvG

V G

ρG

projection onto V Gp(v) ≡
Z

G

gv dg v
p7→ vG ∈ V G

Figure: We project v ∈ V onto the trivial subrepresentation V G of V . As the
projection map p averages over G, the action of g ∈ G rotates components of v
in the x-y plane, leaving only vG ∈ V G pointing along the z-direction.

dim V G = Tr(p) =
ˆ

G
Tr(g|V ) dg ≡

ˆ
G

χ
V

(g) dg
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Multiplicities and characters

More generally, we have the following formulas for multiplicities.

Theorem (Decomposition of compact Lie group representations).
Let V be a representation of a compact Lie group G. Then
there exists a decomposition

V =
k⊕

i=1
V ⊕ai

i ≡ V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k ,

where the Vi are distinct irreducible representations with
multiplicities ai given uniquely by

ai = dim HomG(Vi, V )

=
ˆ

G
χ

Vi
(g−1) χ

V
(g) dg =

ˆ
G

χ
Vi

(g) χ
V

(g) dg .
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Strategy to compute Hilbert Series
For simplicity we will first work with a single real scalar field.
Derivation. The strategy is in the following diagram:

Φ RΦ ≃



Φ
∂aΦ

∂{a1∂a2}Φ
...

∂{a1 · · · ∂an}Φ
...


JΦ

χJΦ

H(ϕ, D) =
ˆ

SO(d)

1
P (D; g)χJΦ

(ϕ, D; g) dg︸ ︷︷ ︸
H0(ϕ,D)

+ ∆H(ϕ, D)

⊕∞
n=0 Dn∂n•

and EOM
∂a∂aΦ = 0

⊕∞
r=0 ϕrSr(•)

since Φ is a boson

the Projection Formula (1/P accounts for IBP)
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SO(d)
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Single Particle Graded Representation RΦ

Lkin = 1
2(∂aΦ)(∂aΦ) = 1

2(∂Φ)(∂Φ) =⇒ □Φ ≡ ∂∂Φ ∼ 0

Derivation (Single Particle Graded Representation RΦ). We easily
see that all operators composed of one Φ modulo EOM are in

RΦ = Span
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∂{a1∂a2}Φ
...
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
≡

∞⊕
n=0

DnS{n}(□) ≡ S{•}(□),

where { ··· } denotes the traceless symmetric part and □ ≡ Cd

denotes the standard representation of SO(d).
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Multi-Particle Graded Representation JΦ

Derivation (Multi-Particle Graded Representation JΦ). Since Φ is
a boson, the corresponding operators must obey permutation
symmetry. We can obtain all operators modulo EOM in the
symmetric powers of RΦ, thus

JΦ ≡
∞⊕

r=0
ϕrSr(RΦ) ≡ S(RΦ) ≡ S

(
S{•}(□)

)
.

The corresponding graded character can be calculated as

χJΦ
(ϕ, D; g) ≡ χ

S(RΦ)(ϕ, D; g) = PE
[
ϕ χ

RΦ
(D; g)

]
= PE

[
ϕ χ

S{•}(□)(D; g)
]

= PE
[
ϕ (1 − D2)χ

S(□)(D; g)
]

Remark (Gram determinant conditions). Since we are building JΦ
in a sense constructively, representation theory automatically
discards

∧n
(□) for n > d, thus addressing GDC relations.
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Integration by parts redundancy

Operators with one free index can generate IBP relations, but
only those that have nonzero divergence. Prime example which
do not contribute are operators of the form

∂aOab where Oab ≡ O[ab] =⇒ ∂b∂aOab = ∂(b∂a)O[ab] = 0,

that is so called co-exact 1-forms. For forms we automatically
have ∂ · ∂ · • = 0, thus every co-exact form is also co-closed.

Total divergence terms are equivalent to zero by IBP relations,
thus K ≡ Span(B) is composed of all 0-forms (Lorentz invariants)
contained in J modulo the co-exact ones, leading to

H(ϕ, D) ≡ dim(ϕ,D) K = dim(ϕ,D) J[0]not co-exact.
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Addressing IBP relations by cohomology

Derivation (Addressing IBP relations, splitting H = H0 + ∆H).

dim K =
dim J[0]not co-exact︷ ︸︸ ︷

dim J[0] − dim J[0]co-exact

= dim J[0] − D dim J[1]not co-closed

= dim J[0] − D
(
dim J[1] − dim J[1]co-closed

)
= dim J[0] − D

(
dim J[1] − dim J[1]co-exact︸ ︷︷ ︸

D dim J[2]not co-closed

− dim J[1] co-closed
not co-exact

)
iteratively

......
=

d∑
k=0

(−D)k dim J[k]︸ ︷︷ ︸
H0

+
d∑

k=1
(−1)k+1Dk dim J[k] co-closed

not co-exact︸ ︷︷ ︸
∆H
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The Master Formula

Derivation (Master Formula for H0). Since IBP relations were
addressed quite generally, we obtain the Master Formula

H0(ϕ, D) =
ˆ

SO(d)
χ∧−(□)(D; g−1) χJ (ϕ, D; g) dg

≡
ˆ

SO(d)

1
P (D; g) χJ (ϕ, D; g) dg ,

where

P (D; x ↔ g) ≡



r∏
i=1

1
(1 − Dxi)(1 − D/xi)

for d = 2r,

1
1 − D

r∏
i=1

1
(1 − Dxi)(1 − D/xi)

for d = 2r + 1.

Integration can be further simplified by restricting it to the torus
T of SO(d) (using the Weyl integration formula).
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Applications — Single Scalar Field

Bringing everything together, for a single scalar field we obtain

H0(ϕ, D) =
ˆ

SO(4)

1
P (D; g)

χJΦ
(ϕ,D;g)︷ ︸︸ ︷

PE
[
ϕ(1 − D2)P (D; g)

]
dg

=
"

|x1|=1
|x2|=1

(1 − Dx1)(1 − D/x1)(1 − Dx2)(1 − D/x2)×

× PE
[

ϕ(1 − D2)
(1 − Dx1)(1 − D/x1)(1 − Dx2)(1 − D/x2)

]
×

×(1 − x1x2)(1 − x1/x2) dx1
2πix1

dx2
2πix2

,

where x = (x1, x2) parametrizes the torus T of SO(4), and

P (D; x) ≡ χ
S(□)(D; x) = 1

(1 − Dx1)(1 − D/x1)(1 − Dx2)(1 − D/x2) .
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Applications — Single Scalar Field
With the help of Mathematica we obtain for d = 4 and r = 4:

Figure: Calculation of H4(D ↔ q) in the accompanying Mathematica notebook.

H4(D) ≡ H(ϕ, D)
∣∣∣
ϕ4

= 1
(1 − D4)(1 − D6)

= 1 + D4 + D6 + D8 + D10 + 2D12 + · · ·

Φ4 ∂∂Φ∂Φ∂ΦΦ ∂∂Φ∂∂Φ∂∂ΦΦ . . .
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Applications — Single Scalar Field

d H4(D) H5(D)

≥ 5 1 + D12 + D14 + D16 + D18 + D30

(1 − D4)(1 − D6)(1 − D8)(1 − D10)(1 − D12)

4 1
(1 − D4)(1 − D6)

1 + D10 + D12 + 2D14 + 2D16 + D18 + D22 + D24 + D28 + D30

(1 − D4)(1 − D6)(1 − D8)(1 − D10)(1 − D12)

3 1 + D9

(1 − D4)(1 − D6)
1 + D9 + D12 + D13 + D14 + 2D15 + D16 + D17 + D18 + D21 + D30

(1 − D4)(1 − D6)(1 − D10)(1 − D12)

2 1
1 − D4

1 + D12

(1 − D4)(1 − D12)

Table: The Hilbert series for a single scalar field (fixed field content Φ4 and Φ5).

For d = 3 we have one additional operator for every one in d = 4,
but with 9 more derivatives. This corresponds to the operator

εabc(∂∂∂∂aΦ)(∂∂∂bΦ)(∂∂cΦ)(Φ).
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Applications — Single Scalar Field

d H6(D)

≥ 6
1+2D10+5D12+7D14+9D16+11D18+13D20+14D22+21D24+24D26

+28D28+32D30+26D32+22D34+13D36+7D38+3D40+D42+D44

(1 − D4)(1 − D6)2(1 − D8)3(1 − D10)2(1 − D12)

5

1+2D10+5D12+7D14+D15+9D16+D17+11D18+3D19+13D20+7D21+14D22+13D23+21D24

+22D25+24D26+26D27+28D28+32D29+32D30+28D31+26D32+24D33+22D34+21D35

+13D36+14D37+7D38+13D39+3D40+11D41+D42+9D43+D44+7D45+5D47+2D49+D59

(1 − D4)(1 − D6)2(1 − D8)3(1 − D10)2(1 − D12)

4
1+3D10+6D12+11D14+17D16+22D18+31D20+36D22+48D24+53D26+58D28

+58D30+48D32+38D34+23D36+14D38+6D40+4D42+2D44+D46

(1 − D4)(1 − D6)2(1 − D8)3(1 − D10)(1 − D12)

3
1+D8+2D9+2D10+2D11+3D12+5D13+4D14+6D15+5D16+6D17+6D18+6D19+5D20+6D21+6D22

+5D23+6D24+6D25+6D26+5D27+6D28+4D29+5D30+3D31+2D32+2D33+2D34+D35+D43

(1 − D4)(1 − D6)2(1 − D8)(1 − D10)(1 − D12)

2 1 + D4 + D6 + 2D8 + D10 + 3D12 + 3D16 + D18 + D22

(1 − D8)(1 − D12)2

Table: The Hilbert series for a single scalar field, with a fixed field content Φ6.
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Applications — Single Scalar Field
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Figure: Log-log plot of the coefficients of H6(D) in d = 2, . . . , 6.



22/22

Summary and generalization
Our starting data for any EFT are:

• Particle fields {Φi} together with their representations
under the Lorentz group SO(d) and the internal group G.

• EOM generated from the kinetic Lagrangian density Lkin.
• Possibly some other constraints.

The Hilbert series is then calculated as:

{Φi}
{

RSO(d),Φi
⊗ RG,Φi︸ ︷︷ ︸

RΦi

}
J

χJ

H(ϕ, D) =
ˆ

SO(d)×G

1
P (D; g)χJ (ϕ, D; g) dg︸ ︷︷ ︸

H0(ϕ,D)

+ ∆H(ϕ, D)

⊕∞
n=0 Dn∂n•

and EOM

⊗
i

(
∞⊕

r=0
ϕr

i
Sr(•i)∧r(•i)

)
Φi is a boson

fermion

the Projection Formula + Weyl integration formula
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Applications — Electromagnetic Field
We take F•• instead of A• as a building block of the Lagrangian
density, since it automatically satisfies the gauge invariance.
Calculation (EOM and other relations). The kinetic Lagrangian
density has the well-known form

Lkin(A•, ∂•A•) ≡ −1
4FabF

ab,

which leads to the free equations of motion

∂aFab = 0. (EOM)

Furthermore, F•• automatically satisfies the Bianchi identities
due to its definition as the exterior derivative of A•

3∂[aFbc] = daFbc = dadbAc = 0. (Bianchi)

As a simple consequence of the previous two we have

∂a∂aFbc = ∂a∂aFbc + ∂a∂cFab

by (EOM)

+ ∂a∂bFca

by (EOM)

= 3∂a∂[aFbc]
by (Bianchi)====== 0.
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Applications — Electromagnetic Field
To build RF we repeatedly apply derivatives on F••, but we also
need to utilize all relations to avoid any redundancies.

It is useful to decompose representations we obtain to smaller
pieces, some of which will be zero by usage of the relations.

For example, we can decompose ∂{aF[b}c] as

F••

F••
⊗ ∂• =

F••

F••

∂•

Bianchi

⊕ F•• ∂•

F••
⊕ F••

∂• F••

EOM

.

Following further, we can find the decomposition of ∂{a∂bF[c}d] as

F•• ∂•

F••
⊗ ∂• =

F•• ∂•

F••

∂•

Bianchi

⊕ F•• ∂•

F•• ∂•

∂[•∂•]=0

⊕ F•• ∂• ∂•

F••
⊕ F•• ∂•

∂• F••

EOM

⊕ F•• ∂• ∂•

F••

Bianchi + EOM

.
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Applications — Electromagnetic Field

Calculation (Single Particle Graded Representation RF for the
electromagnetic field). We obtain RF of the form

RF = Span



F[ab]
∂{a1F[a}b]

∂{a1∂a2F[a}b]
...

∂{a1 · · · ∂anF[a}b]
...


≡ D ⊕ D2 ⊕ D3 ⊕ · · ·

· · · ⊕ Dn

n︷ ︸︸ ︷
··· ⊕ · · ·

with the graded character (Fab = daAb contains one derivative)

χ
RF

(D; x) ≡ Dχ (x) + D2χ (x) + D3χ (x) + · · ·

=

(
(D − D3)χ□(x) − (1 − D4)

)
P (D; x) + 1

D
.
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Applications — Electromagnetic Field
d 1

D4 HF 4(D) miscount 1
D5 H0,F 5(D)

≥ 10 2 + 3D2 + 2D4

(1 − D4)(1 − D6) · · ·

9 2 + 3D2 + 2D4

(1 − D4)(1 − D6) − D · · ·

8 2 + 3D2 + 2D4

(1 − D4)(1 − D6) + 1 · · ·

7
1
D + 2 + 3D2 + 2D4

(1 − D4)(1 − D6) − 1
D

D3+4D4+4D5+16D6+10D7+39D8+17D9+69D10+28D11

+99D12+36D13+125D14+41D15+135D16+43D17+126D18

+38D19+105D20+28D21+73D22+19D23+41D24+10D25

+19D26+2D27+5D28−2D30−D31−2D32−D33+D37

(1 − D4)(1 − D6)(1 − D8)(1 − D10)(1 − D12)

6 2 + 3D2 + 2D4 + D8

(1 − D4)(1 − D6)

1+4D2+13D4+34D6+73D8+121D10+168D12+210D14+226D16

+213D18+182D20+131D22+79D24+42D26+16D28+D30−D32−D36

(1 − D4)(1 − D6)(1 − D8)(1 − D10)(1 − D12)

5 2 + 3D2 + 2D4

(1 − D4)(1 − D6)

D+5D3+4D4+16D5+16D6+30D7+36D8+51D9+63D10+73D11+89D12+92D13

+110D14+103D15+117D16+103D17+108D18+91D19+88D20+71D21+59D22

+49D23+32D24+27D25+13D26+12D27+2D28+3D29−3D30−2D32−D33

(1 − D4)(1 − D6)(1 − D8)(1 − D10)(1 − D12)

4 3 + 5D2 + D4 − 2D6

(1 − D4)(1 − D6)
2
(

2D4+7D6+17D8+28D10+35D12+42D14+39D16+28D18

+18D20+4D22−7D24−8D26−7D28−7D30−D32+2D34

)
(1 − D4)(1 − D6)(1 − D8)(1 − D10)(1 − D12)

3 1 + D2 + D5 − D6

(1 − D4)(1 − D6)

D5+2D7+D8+D9+2D10+D11+D12

+D13+D14+2D16−D17+D25−D26

(1 − D4)(1 − D6)(1 − D10)(1 − D12)

Table: The Hilbert series for the electromagnetic field (with F 4 and F 5).
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Summary and generalization
Our starting data for any EFT are:

• Particle fields {Φi} together with their representations
under the Lorentz group SO(d) and the internal group G.

• EOM generated from the kinetic Lagrangian density Lkin.
• Possibly some other constraints.

The Hilbert series is then calculated as:

{Φi}
{

RSO(d),Φi
⊗ RG,Φi︸ ︷︷ ︸

RΦi

}
J

χJ

H(ϕ, D) =
ˆ

SO(d)×G

1
P (D; g)χJ (ϕ, D; g) dg︸ ︷︷ ︸

H0(ϕ,D)

+ ∆H(ϕ, D)

⊕∞
n=0 Dn∂n•

and EOM

⊗
i

(
∞⊕

r=0
ϕr

i
Sr(•i)∧r(•i)

)
Φi is a boson

fermion

the Projection Formula + Weyl integration formula
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Graded representations
It is hopeless to work with one operator at a time, not only
efficiency-wise, but also due to IBP relations between them.

Definition (Graded representation). Representation V of G is
called a graded representation if it has the form of

V ≡
∞⊕

n=0
tnVn,

where Vn is a finite-dimensional representation ∀n ∈ N0.

Example (Tensor, symmetric, and exterior graded representations).
Let V be a representation of G. We define the tensor, symmetric, and
exterior graded representations of V , respectively, as

T (V ) ≡
∞⊕

n=0
tnV ⊗n, S(V ) ≡

∞⊕
n=0

tnSn(V ),
∧

(V ) ≡
dim V⊕
n=0

tn
∧n

(V ).
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Graded dimensions

Definition (Graded dimension). The graded dimension dimt V
is a formal series in a complex parameter t defined by

dimt V ≡
∞∑

n=0
tn dim Vn.

Remark (H(ϕ, D) as a graded dimension of K = Span B).
The space Span B can be understood as a graded representation
of the Lorentz (and possibly gauge) group. Every graded piece is
composed of trivial representations, since all operators in B must
be invariant. If we choose appropriate grading, we recognize that

dim(ϕ,D) K = H(ϕ, D).

The coefficients of H(ϕ, D) are thus denoted as drn, because
they are the dimensions of the corresponding graded pieces.
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Graded characters

Proposition (Selected graded characters). The following graded
characters of are given by:

χ
T (V )(t; g) =

∞∑
n=0

tnχ
V ⊗n(g) = 1

1 − t Tr(g|V ) ≡ 1
1 − tχ

V
(g)

χ
S(V )(t; g) =

∞∑
n=0

tnχ
Sn(V )(g) = 1

det(1 − tg|V ) ≡ PE
[
tχ

V
(q; g)

]
χ∧(V )(t; g) =

∞∑
n=0

tnχ∧n(V )(g) = det(1 + tg|V ) ≡ PEf

[
tχ

V
(q; g)

]
Remark. Graded characters are reminiscent of partition functions
found in statistical mechanics (the grand-canonical partition
functions for Bose-Einstein/Fermi-Dirac ideal quantum gases)

Zg =
∏
n

[
1 ∓ e−β(En−µ)

]∓
≡
∏
n

[
1 ∓ ze−βEn

]∓
.
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Plethystic exponential
Remark (Plethystic Exponential). For a function α(t1, . . . , tk) with
α(0, . . . , 0) = 0 we have the (fermionic) Plethystic Exponential

PEf [α(t1, . . . , tk)] ≡ exp
( ∞∑

r=1
(−1)r+1 1

r
α(tr

1, . . . , tr
k)
)

.

For two functions α, β (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property

PEf [α + β] = PEf [α] PEf [β].

One simple example is α(t, q) ≡ t and β(t, q) ≡ q, for which it
generates all antisymmetric combinations of the variables, that is

PEf [t + q] =
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(1 + t)(1 + q) = 1 + t + q + tq.
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Weyl integration formula

Theorem (Weyl integration formula). Let f be a class function
on a connected compact Lie group G of rank r with a maximal
torus T parametrized by x ≡ (x1, . . . , xr). Then we have

ˆ
G

f(g) dg =
"

|xi|=1

f(x)

 ∏
α∈R+(G)

(1 − xα)


︸ ︷︷ ︸

D+
G(x)

[∏
i

dxi

2πixi

]
,

where R+(G) is the set of so-called positive roots.

Specifically, for G = SO(d) we have explicit forms

D+
SO(d)(x) =


∏

1≤i<j≤r

(1 − xixj)(1 − xi/xj) for d = 2r,

r∏
i=1

(1 − xi)
∏

1≤i<j≤r

(1 − xixj)(1 − xi/xj) for d = 2r + 1.



10/13

Weyl integration formula

Theorem (Weyl integration formula). Let f be a class function
on a connected compact Lie group G of rank r with a maximal
torus T parametrized by x ≡ (x1, . . . , xr). Then we have

ˆ
G

f(g) dg =
"

|xi|=1

f(x)

 ∏
α∈R+(G)

(1 − xα)


︸ ︷︷ ︸

D+
G(x)

[∏
i

dxi

2πixi

]
,

where R+(G) is the set of so-called positive roots.

Specifically, for G = SO(d) we have explicit forms

D+
SO(d)(x) =


∏

1≤i<j≤r

(1 − xixj)(1 − xi/xj) for d = 2r,

r∏
i=1

(1 − xi)
∏

1≤i<j≤r

(1 − xixj)(1 − xi/xj) for d = 2r + 1.



11/13

Maximal torus of SO(d)

The maximal torus of SO(2r + 1) is

TSO(d) = SO(2) × · · · × SO(2)︸ ︷︷ ︸
r

∼= (S1)r.

In the standard representation □ ≡ Cd ≡ C2r+1 we have

T =





cos θ1 − sin θ1
sin θ1 cos θ1

. . .
cos θr − sin θr
sin θr cos θr

1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
θj ∈ [0, 2π)
j ∈ 1, . . . , r


Alternatively, we can parametrize by r complex variables on the
unit circle, namely by x ≡ (x1, . . . , xr) ≡ (eiθ1 , . . . , eiθr).
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Characters of SO(d)
Since characters are class functions, and every element can be
conjugated to the maximal torus, to evaluate χ(g) it is enough to
specify it for any corresponding torus element x ↔ g.

Using the parametrization introduced previously we obtain

χ□(x) =


2

r∑
i=1

cos(θi) =
r∑

i=1

(
xi + 1

xi

)
for d = 2r,

1 + 2
r∑

i=1
cos(θi) = 1 +

r∑
i=1

(
xi + 1

xi

)
for d = 2r + 1.

Eigenvalues of the torus element x ↔ g are {xi, 1/xi, 1}r
i=1, so

χ
S(□)(t; x)︸ ︷︷ ︸

P (t; x)

=



r∏
i=1

1
(1 − txi)(1 − t/xi)

for d = 2r,

1
1 − t

r∏
i=1

1
(1 − txi)(1 − t/xi)

for d = 2r + 1.
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Projection factor
Derivation (Projection factor 1/P (D; g) addressing IBP relations).
We can obtain a nice alternative expression as

H0(ϕ, D) ≡
d∑

k=0
(−D)k dim(ϕ,D) J[k]

≡
d∑

k=0
(−D)k dim(ϕ,D) HomSO(d)

(∧k
(□), J

)

= dim(ϕ,D) HomSO(d)

( d⊕
k=0

(−D)k
∧k

(□), J
)

≡ dim(ϕ,D) HomSO(d)
(∧−

(□), J
)
,

where
∧−

(□) is the exterior graded representation of □, but
with alternating signs in the grading. Its graded character is

χ∧−(□)(D; g) ≡ det□(1 − Dg) = 1
χS(□)(D; g) ≡ 1

P (D; g) .
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