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e We can choose different sets of operators {O;}.
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Not all operators are independent.

Definition (Operator relations). Operators O, and O,, are
considered equivalent (denoted by O,, ~ O,,), if they satisfy:

(a) Equations of motion — EOM

5Skin

/
50, O

EIO’,<I>j: Opm =0, +

(b) Integration by parts — IBP ([, d-O = [;,, O =0)
30" 0y =0,+0 -0
(¢) Gram determinant conditions — GDC
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Example (EOM and IBP).
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The Operator Basis and the Hilbert Series

Definition (Operator basis). The operator basis B of the EFT
is a minimal set of operators leading to all possible physical
phenomena in the realm of the EFT.

In general it is hard to construct B. An easier step is to at least
count independent operators of different types.

Definition (Hilbert series). The Hilbert series is a formal series
H(¢, D)= > dr¢"D",
r n=0

where dyp, = dy,..ryn € No is the number of independent
operators in the operator basis B of the type 9" ®".
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The corresponding free Hilbert series is obtained by
substituting (®;,d) for their corresponding labels (¢;, D),

Hfree Z Z dfree¢an _ H H Dn¢

r n=0 zan
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Example — N Scalar Fields {®;} ind =1
The kinetic Lagrangian density of IV scalar fields in d =1 is

Y1

=1

(2) Only EOM relations. Considering the kinetic Lagrangian
density Ly, the (free) EOM relations are 92®; = 0.

We even have 0"®; = 0 for n > 2, so the operator basis is
now freely and finitely generated by the set {®;,0®;} Y,
giving us the EOM Hilbert series of the form

N 1

HyOM(,D) = 1;[1 (1—¢:)(1 —Dgy)
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(8) Only IBP relations. One particular example in the case of
only one field flavor would be

0~ (0" '@)D") = (8"®)D" + k(9" D) (9D)BF 1.
So for r # 0 we have diBP = gfree — gfree | (and diF = dy,,).

A simple reordering of the summation gives us
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r n=0 r#0n=0
~D) Y N direegTD" = D+ (1 - D)HE®(D, {¢:}).
r#0n=0

Again, the IBP Hilbert series is given by a straightforward
modification of the free Hilbert series as

IBP(¢’ ) ’D+ 1-D HHI—'D”(ﬁ
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(4) Both EOM and IBP relations. Interplay of both types of
relations makes this problem harder (and thus interesting).
It is still possible to find analytic expression by techniques
similar to those we will present in the following, see

B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert se-
ries and operator bases with derivatives in effective field theories,
Communications in Mathematical Physics, 2015, no. 2, DOI:
10.1007/s00220-015-2518-2. arXiv: 1507.07240 [hep-th]

Only in d = 1 the Lorentz group is trivial and the application of
the derivatives is always unambiguous.

From now on, we always assume d > 2, where each derivative
carries an index with non-trivial transformation properties.
To construct a Lorentz invariant operator, we are forced to
contract all the indices (similarly for internal symmetries).
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What about d > 27

Usually there are multiple possibilities how to contract all indices
(and they rapidly grow with the number of derivatives). Together
with non-trivial relations this brings substantial complezity.

Challenge. Try to guess the number of independent operators of
the type 0"®* for n = 2,4,6,8,10,12,... in d = 4.

— — — ] —1 r—
0POOPIIPOD 00P00PIPOP 00P00POPOD
=T == =
000990P0PD 009900P00PD 00090P0DP0D
How do we obtain the Hilbert series in a more general

setting, for an arbitrary dimension and field content?

B. Henning, X. Lu, T. Melia, and H. Murayama,
Operator bases, S-matrices, and their partition functions,
Journal of High Energy Physics, 2017, no. 10, DOI:
10.1007/jhep10(2017)199. arXiv: 1706.08520 [hep-th]
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Figure: A representation p of a group G on a vector space V. A group
element g € G is represented by a linear operator p(g) € GL(V).
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Figure: We project v € V onto the trivial subrepresentation VG of V. As the
projection map p averages over GG, the action of g € G rotates components of v
in the z-y plane, leaving only v € V& pointing along the z-direction.

dim VE = Te(p) = /G Tr(glv) dg = /G Yy (9) dg
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Multiplicities and characters

More generally, we have the following formulas for multiplicities.

Theorem (Decomposition of compact Lie group representations).
Let V be a representation of a compact Lie group G. Then
there exists a decomposition

k
V=@Vt =rte e vt
i=1

where the V; are distinct irreducible representations with
multiplicities a; given uniquely by

a; = dim Homg(V;, V)
- /GXVf(gl)Xv(g) dg = / Xy (9) x,(9) dg -

a (3
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Derivation. The strategy is in the following diagram:

P
0, P
@Zozo DO e 8{(11 80‘2}(1) @:io ¢TST(.)
o and EOM Rq; = % since ® is a boson @
0%0,2=0
8{(11 R 8an}(1)
: X Ts
the Projection Formula (1/P accounts for IBP) J
1
L HO.D) = [ ong, (0.Dig)dg + AH(6.D
(D) so() P(D;g) 7 ) (D)

Hp ((z)vD)
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Single Particle Graded Representation Rg
Liin = 5(0:8)(0°®) = | (52)(00) — 00 = 5D ~ 0

Derivation (Single Particle Graded Representation Rg). We easily
see that all operators composed of one ® modulo EOM are in

P
0, ®
Ofa,0a0} ® 00
Re = Span . = @ Dns{n} (D) = S{.}(D)>
Otay - Oy @ =0

where ¢y denotes the traceless symmetric part and 1 = cd
denotes the standard representation of SO(d).
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Multi-Particle Graded Representation Js

Derivation (Multi-Particle Graded Representation Jg). Since @ is
a boson, the corresponding operators must obey permutation
symmetry. We can obtain all operators modulo EOM in the
symmetric powers of Rg, thus

Jo = éwsr(&b) = S(Re) = S(S™H(D)).
r=0

The corresponding graded character can be calculated as

X7, (D3 9) = Xg(p,)(#: D;g) = PE [¢ Xy (D;g)}
= PE[6 Xg001 ) (D:9)| = PE[6 (1 = DY)xg (D3 0)]
Remark (Gram determinant conditions). Since we are building Js

in a sense constructively, representation theory automatically
n
discards /\ (O) for n > d, thus addressing GDC relations.
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Integration by parts redundancy

Operators with one free index can generate IBP relations, but
only those that have nonzero divergence. Prime example which
do not contribute are operators of the form

0*Oqp where Ogp = Oy = "9y = 3(baa)0[ab] =0,

that is so called co-exact 1-forms. For forms we automatically
have 0 - 0 - ¢ = 0, thus every co-exact form is also co-closed.

Total divergence terms are equivalent to zero by IBP relations,
thus K = Span(B) is composed of all 0-forms (Lorentz invariants)
contained in J modulo the co-exact ones, leading to

H((,b, D) = dim(@’p) K= dim((j;,’D) u7[0]not co-exact -
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Derivation (Addressing IBP relations, splitting H = Hy + AH).
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The Master Formula

Derivation (Master Formula for Hy). Since IBP relations were
addressed quite generally, we obtain the Master Formula

Ho@. D)= [ P76 D) ds

(
L s a(@ Do)
= X y539)ag,
sow) P(D;g) ™7

where
r 1
ford =2
H (1—-Dz)(1—D/zy) A
P(D;x < g) = N
L H ! ford=2r+1
1-D 5 (1—Dx;))(1 —D/x;)

Integration can be further simplified by restricting it to the torus
T of SO(d) (using the Weyl integration formula).
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where & = (21, x2) parametrizes the torus 7" of SO(4), and

1
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P(D;z) = XS(D)(D§ x) =



Applications — Single Scalar Field
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Applications — Single Scalar Field

d Hq(D) H5(D)
. 1+D]2+p14+D]6+D18+D30
= (1 —=DY(1 = DS)(1 — D¥)(1 — DIO)(1 — D)
A 1 1+ D04 DI2 4 2D 4 2DI6 4 PIS 4 P22 4 P2 4 P8 4 DI
(1— DY) (1 - DY) (1= DY (1 — DS)(1 — D¥)(1 — DIO)(1 — D)
3 1+DY 1+ D%+ D' 4+ DB 4 DU 4 2D5 4 DI6 4 DIT 4 DI 4 D21 4 DI
(1-D4H(1 -1 (1=DH(1 =D (1 -D)(1 - D)
5 1 1+ D"
1-D4 (1-DY(1-DR?)

Table: The Hilbert series for a single scalar field (fixed field content ®* and ®3).
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d Hy(D) Hs(D)

14 D24 DM 4 PI6 4 DI 4 DI

>5 .
= (1—DN(1—Db)(1 - D¥)(1 — D)(1 — D)
A 1 1+ D04 DI2 4 2D 4 2DI6 4 PIS 4 P22 4 P2 4 P8 4 DI
(1— D1 (1 - D" (1—DN(1—DO)(1 - D¥)(1 - DO)(1 — D7)
3 1+DY 1+ D%+ D' 4+ DB 4 DU 4 2D5 4 DI6 4 DIT 4 DI 4 D21 4 DI
(1-D4H(1 -1 (1=DH(1 =D (1 -D)(1 - D)
9 1 1+ D2
1-Dt (1-DH(1-D?)

Table: The Hilbert series for a single scalar field (fixed field content ®* and ®3).

For d = 3 we have one additional operator for every one in d = 4,
but with 9 more derivatives. This corresponds to the operator

. | ——1 I
(0000, ) (000, D)(00.D)(P).



Applications — Single Scalar Field

Heg(D)

142D104-5D12 47D 19D16 4 11D18 413D20414D?2 21 D34 424 D36
+28D28+32D%0+26D32422D34413D3647D384+3D40+ D24 D4

(1= DH)(1 = D6*(1 - D)’(1 — DW0)*(1 - D12)

142D104-5D12 47D D154 9D16 4 D17 L 11 D18 +3D19 +13D204-7D?! +14D?24-13D?3 421D
+22D354-24D26 426 D27 28 D28 432D294-32D30 - 28 D31 426 D32 4-24D33 - 22D34 421 D35
+13D36414D37+7D38413D39 +3D40 411D + D42 49D*3 + DI 4 7D45 4 5DAT 2D+ DY

(1 —DY(1 - DO2(1 — D8)*(1 — DL0Y%(1 — D12)

1+3D104+6D12+11DM417D164-22D18 4 31 D20 4+ 36 D22 +48D24 4 53D26 458 D28
+58D304+48D324-38D344-23D36 +14D384-6D10 4+ 4D42 4 2 D44 L D16

(1 — D4 (1 —D)%(1 — D8)3(1 — D10)(1 — D12)

14+D842D94-2D104 2D 43D 124 5D 44D L6 DI+ 5 DI04 6D 17 6D 46 D10 +5D20+6D?! +6D?2
+5D2346D24+ 6D +6D?645D27+6D28+4D29+5D3043D31 4-2D324 9384 9p34 4 P34 D3

(1 - DH)(1 - DO)2(1— D¥)(1 - DIO)(1 — D)

1+D4 +D6+2D8+D10+3D12+3D16+D18+D22
(1 —D8)(1 — D12)?

Table: The Hilbert series for a single scalar field, with a fixed field content ®9.
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Figure: Log-log plot of the coefficients of Hg(D) ind = 2,...,6.
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Applications — Electromagnetic Field
We take F,o instead of A, as a building block of the Lagrangian
density, since it automatically satisfies the gauge invariance.

Calculation (EOM and other relations). The kinetic Lagrangian
density has the well-known form

1
Ekin<A07 80A0) = _1 abFaba

which leads to the free equations of motion
0%Fy, = 0. (EOM)

Furthermore, F,e automatically satisfies the Bianchi identities
due to its definition as the exterior derivative of A,

38[anC] == danC = dadbAc =0. (Bianchi)

As a simple consequence of the previous two we have
by (EOM) by (EOM)
by (Bianchi)

8a8anC = aaaanc + 8a((/)ci,:ab + aaaoFca = Baaa[anC] —— 0.
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Calculation (Single Particle Graded Representation Ry for the
electromagnetic field). We obtain Ry of the form

Rp = Span

91410z Flayy)

Dtay +* Oan Flayy

=pHep*Hep*H e -

/—’L

with the graded character (Fy, = d,Ap contains one derivative)

Xg, (D;x) = Dxg(@) + Dxp(®) + D xgm(@) + -+

(0= D)xg(@) - (1 = DY) P(Dsa) + 1

D
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d #HFA;(D) miscount
- 10 2+ 3D% + 2D*
- (1 -=D*)(1 - DY)
9 2+ 3D? +2D* »
(1 —D%)(1— DY)
s 2+ 3D% 4 2D!
T-DpHa-ov)
D34+4D14+4D5+16DC+10D7+39D5+17D?+69D10+28 D11
+99D'Zw+:zﬁz>‘3;’12513'1]+411>‘z;rlssvlﬁxﬂ:m;ﬂ%e;ﬂ
L hERESDTeaDt R T ke
(1 —D%)(1— DY) P (1 —=D*)(1—Db)(1—D8)(1—D0)(1—D2)
P y 144D 413D* 34D+ 73D8 4121 D10+ 168D124-210D 14 4226 D16
6 2+3D% +2D" + D° 213D 182D 4 131D22 79D 42D 4 16D + D30 D32 36
(1-D*)(1 - DY) (1 —=D*(1—DO)(1—D8)(1—-DW)(1 - D)
D+5D3 44D +16D%+16D0+30D7+36D% +51D9+63D10+ 73D +89D124-92D13
o 4 +110D'1+103D15+117D10+103D'7+108D'84+-91D19+88D20 4 71D2! 4-59D?2
5 2+3D" +2D 49D 1 39D241 97D 4 13D 4 12D27 19D | 3230 _opi2_p3s
(1 -D*)(1 - DY) (1 —=D*(1—DO)(1—D8)(1—DW)(1 - D'2)
- 5 2D*+7D%+17D8+28D10+35D12 442D 1-39D16 28 D18
4 3+5D? + D* — 2D6 2( +|§D20+Jr4p227+7pz/1781)2007-D2877D§r071)3212p34 )
(1 —D%)(1— DY) (1 —=D*)(1—Db)(1—D8)(1—D0)(1—D?)
; - 51 9PT L PE DI L2Pl0 L pll L pl2
5 14 D2+ D5 Db D it eI T 2 s s

(1 —Dh(1 DY)

(1 DY)(1 — DO)(1 — DOY(1 — DI2)

Table: The Hilbert series for the electromagnetic field (with 4 and F®).



Summary and generalization

Our starting data for any EFT are:

e Particle fields {®;} together with their representations
under the Lorentz group SO(d) and the internal group G.

e EOM generated from the kinetic Lagrangian density Lyiy.

e Possibly some other constraints.

The Hilbert series is then calculated as:

o0
S7(e:)
o
@ O'Dnan. ®1(Q¢z /\’(./)
— )
{CEZ} and EOM RSO(d),’I% ® RG’CDZ d;isa ['bos‘?n J
Rq)l ermion I
Xg
the Projection Formula + Weyl integration formula J

X (0, D;9)dg + AH(¢, D)

L oo |

so@xa P(D;9)
0(¢7D)
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Graded representations

It is hopeless to work with one operator at a time, not only
efficiency-wise, but also due to IBP relations between them.

Definition (Graded representation). Representation V of G is
called a graded representation if it has the form of

V= @ t"V,,
n=0

where V,, is a finite-dimensional representation Vn € Ng.

Example (Tensor, symmetric, and exterior graded representations).
Let V be a representation of G. We define the tensor, symmetric, and
exterior graded representations of V', respectively, as

(V)= @ever, svy=@estv), A= @ N ).
n=0 n=0
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The space Span B can be understood as a graded representation
of the Lorentz (and possibly gauge) group. Every graded piece is
composed of trivial representations, since all operators in B must

be invariant.



Graded dimensions

Definition (Graded dimension). The graded dimension dim; V'
is a formal series in a complex parameter ¢ defined by

dim; V =) " dim V.
n=0

Remark (H (¢, D) as a graded dimension of I = Span B).

The space Span B can be understood as a graded representation
of the Lorentz (and possibly gauge) group. Every graded piece is
composed of trivial representations, since all operators in B must
be invariant. If we choose appropriate grading, we recognize that

The coefficients of H(¢, D) are thus denoted as dy.,, because
they are the dimensions of the corresponding graded pieces.
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Proposition (Selected graded characters). The following graded
characters of are given by:
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Graded characters

Proposition (Selected graded characters). The following graded
characters of are given by:

(t: Zt 1 o 1
X, 59) Xyerld) = 7= tTr(glv) — 1—tx,(9)
1
(t; Y - =PE[tx.(¢;
X (t:9) Z Xgn (v (9 = det(1 — tg]v) [txy(4:.9)]

n=0

X/\(V) (t; 9) Zt X/\n(v) g) = det(1 +tg|v) = PEy [txv(q;g)]

Remark. Graded characters are reminiscent of partition functions
found in statistical mechanics (the grand-canonical partition
functions for Bose-Einstein/Fermi-Dirac ideal quantum gases)

Zg:H[liFe_B(E” “)}¢ H{lqize E”FE



Plethystic exponential

Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE/fo(r. ...t =351ttt

r=1



Plethystic exponential

Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE,Z"[a(tlv cooyt = exp <Z ’+1 1 . tr>>

For two functions «, 5 (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property

PE;[a + B8] = PE;[a] PE/[5].



Plethystic exponential

Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE,Z"[a(tlv cooyt = exp <Z ’+1 1 . tr>>

For two functions «, 5 (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property

PE;[a + B8] = PE;[a] PE/[5].

One simple example is «(t,q) =t and 5(¢,q) = g, for which it
generates all antisymmetric combinations of the variables, that is



Plethystic exponential

Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE,Z"[a(tlv cooyt = exp <Z ’+1 1 . tr>>

For two functions «, 5 (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property

PE;[a + B8] = PE;[a] PE/[5].

One simple example is «(t,q) =t and 5(¢,q) = g, for which it
generates all antisymmetric combinations of the variables, that is

PE;[t + q]
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Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE,Z"[a(tlv cooyt = exp <Z ’+1 1 . tr>>

For two functions «, 5 (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property
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One simple example is «(t,q) =t and 5(¢,q) = g, for which it
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Plethystic exponential

Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE,Z"[a(tlv cooyt = exp <Z ’+1 1 . tr>>

For two functions «, 5 (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property

PE;[a + B8] = PE;[a] PE/[5].

One simple example is «(t,q) =t and 5(¢,q) = g, for which it
generates all antisymmetric combinations of the variables, that is
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Plethystic exponential

Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE,Z"[a(tlv cooyt = exp <Z ’+1 1 . tr>>

For two functions «, 5 (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property

PE;[a + B8] = PE;[a] PE/[5].

One simple example is «(t,q) =t and 5(¢,q) = g, for which it
generates all antisymmetric combinations of the variables, that is

1 _ 2 2

PRl = {m F(1+0q)



Plethystic exponential

Remark (Plethystic Exponential). For a function «(t1,. .., tx) with
a(0,...,0) = 0 we have the (fermionic) Plethystic Exponential

PE,Z"[a(tlv cooyt = exp <Z ’+1 1 . tr>>

For two functions «, 5 (either one can be bosonic or fermionic)
the Plethystic Exponential satisfies the sum-to-product property

PE;[a + B8] = PE;[a] PE/[5].

One simple example is «(t,q) =t and 5(¢,q) = g, for which it
generates all antisymmetric combinations of the variables, that is

1 _ 2 2

PE/[t+q] =
slitd {(1+/)(1+q)—1+/,+q+/,q.



Weyl integration formula

Theorem (Weyl integration formula). Let f be a class function
on a connected compact Lie group G of rank r with a maximal
torus T parametrized by @ = (x1,...,2,). Then we have

dx;
d g €T 1_:Da .l 9
| r@ds= s )Lg@( ) [H mi]

i
|zs|=1

o5 ()

where R4 (G) is the set of so-called positive roots.




Weyl integration formula

Theorem (Weyl integration formula). Let f be a class function
on a connected compact Lie group G of rank r with a maximal

torus T parametrized by @ = (x1,...,2,). Then we have
. dl‘l
fardg= @ s | T 02| ||
G i1 acRy (G) i i
(@)

where R4 (G) is the set of so-called positive roots.

Specifically, for G = SO(d) we have explicit forms
H (1 —zsz) (1 — xs/x5) for d = 2r,

N 1<i<j<r
z)sow)(w) = r

H(l—mi) H (1 —axsz;)(1 —xs/zj) ford=2r+1.

i=1 1<i<j<r
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Maximal torus of SO(d)

The maximal torus of SO(2r + 1) is

Tso() = SO(2) x -+ x SO(2) = (S')".

r

In the standard representation (0 = CY = C* ' we have

cosfy —sinbq
sin 64 cos 01
9]' S [0,27‘()
cosf, —sinb, jel, ... r
sin 0, cos 0,

1

Alternatively, we can parametrize by r complex variables on the
unit circle, namely by & = (z1,...,2z,) = (e1,...,e"").




Characters of SO(d)

Since characters are class functions, and every element can be
conjugated to the maximal torus, to evaluate x(g) it is enough to
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Characters of SO(d)

Since characters are class functions, and every element can be
conjugated to the maximal torus, to evaluate x(g) it is enough to
specify it for any corresponding torus element x < g.

Using the parametrization introduced previously we obtain

r

QZCOS(HZ‘) = Z(ml + !
i=1

i1 Li

) for d = 2r,
Xg(®) =

r r 1
1+2§ cos(@i)zl—kg <xz+> for d = 2r + 1.

T

i=1 i=1 i

Eigenvalues of the torus element  <» g are {z;,1/z;. 1};_;, so

i
1
ford =2
1} 1 ta)(1—t/m) &
XS(D)(t;m) = r 1
ey cend =2r+1.
P(t;x) 1;[ 1_ tﬂ?l)(l — t/ZZIZ) for d r—+
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We can obtain a nice alternative expression as
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Derivation (Projection factor 1/P(D; g) addressing IBP relations).
We can obtain a nice alternative expression as

d

Ho(¢, D) = ) (~D)" dimg,p) Ty

kf

d
= Z dlm (¢,p) Homsgo(q) (/\k(D), j)

d
= dlm(¢ D) HOmso (@ k/\ )

k=0
= dim(d,’p) HOmso(d) </\_(|:|)7 j) )

where /\_(D) is the exterior graded representation of [J, but
with alternating signs in the grading. Its graded character is

X/\_(EI) (D; g) = deta(1 — Dg)



Projection factor
Derivation (Projection factor 1/P(D; g) addressing IBP relations).
We can obtain a nice alternative expression as

d

Ho(¢, D) = ) (~D)" dimg,p) Ty

kf

d
= Z dlm (¢,p) Homsgo(q) (/\k(D), j)

d
= dlm(¢ D) Homso (@ k/\ )

k=0
= dim(y, p) Homgp(q) (/\_(D)> j) ;
where /\_(D) is the exterior graded representation of [J, but
with alternating signs in the grading. Its graded character is
1

D;g) = detg(l —Dg)= ——F——
XS(D) (DQQ)

Xx o)



Projection factor

Derivation (Projection factor 1/P(D; g) addressing IBP relations).
We can obtain a nice alternative expression as

d

Ho(¢, D) = ) (~D)" dimg,p) Ty

kf

d
= Z dlm (¢,p) Homsgo(q) (/\k(D), j)

d
= dlm(¢ D) Homso (@ k/\ )

k=0
= dim(y, p) Homso(g) ( A\ (0), 7 ),
where /\_(D) is the exterior graded representation of [J, but
with alternating signs in the grading. Its graded character is
1 1
Xs@o)(Dig) — P(Dsg)
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