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Title: Counting operators in Effective Field Theories

Author: Jonas Dujava

Institute: Institute of Particle and Nuclear Physics

Supervisor: Mgr. Petr Vasko, Ph.D., Institute of Particle and Nuclear Physics

Abstract: When applying physical calculations to the real world, it is always
necessary to make some approximations. In the context of field theories, in partic-
ular the quantum field theories used in particle physics, a systematic treatment of
this problem is provided by the framework of Effective Field Theories. Working
in a given energy range, it is enough to consider only a couple of particles, while
the existence of the rest only contributes some corrections. This is reflected in
the structure of Effective Field Theory Lagrangians given as perturbation series,
which are in general composed of all possible operators consistent with locality,
unitarity, and symmetry assumptions. Obviously, it is advantageous to work
with a minimal set of operators covering all physical phenomena, however the
construction of the operator basis is very hard in general. Simpler step is to at
least count all independent operators with a given number of derivatives and
particle fields. To this end, the generating function (termed the Hilbert series) is
introduced, with coefficients precisely being the number of independent operators
of a given type. One can consider only scalar operators, that is Lorentz and
gauge invariant operators, moreover consistent with other additional symmetries.
To count independent operators it is furthermore necessary to handle various
relations between them, induced namely by equations of motion, integration
by parts, and finite-dimensionality conditions. It turns out that by virtue of
understanding the transformation properties of operators, group theory together
with the representation theory provide useful tools to calculate the Hilbert series.
The main idea is to construct all possible operators along with corresponding
group characters (which characterize their transformation properties), and project
out only independent scalar operators using the character orthogonality. Big
part of this thesis is focused on developing the important theory of Lie group
representations, which is later necessary to derive the formula for the Hilbert
series. Finally, the group theoretical formalism is applied to count operators for a
single scalar field, and also a more complex case of the electromagnetic field.

Keywords: Classical field theory, Effective field theory, Group theory, Lie groups,
Representation theory, Schur character orthogonality relations, Hilbert series
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Introduction

Every physical calculation applied to the real world is only an approximation.
This is mainly consequence of two factors — we can not measure and prepare
initial states with infinite precision, and we do not posses the exact theory. Even
if we did, it is almost impossible to calculate anything without making some
mathematical shortcuts along the way.

Take for example particle physics, where it is hard to complete the calculations
in full generality using the present “full-fledged” theory, which furthermore still
might miss even more particles. However, in a given energy range it is enough
to consider only a couple of particles to obtain relevant quantitative predictions.
The existence of other particles only leads to some corrections, which would
be desirable to systematically address. This is the main idea of Effective Field
Theories (EFTs).

Being perturbative in their nature, EF'T Lagrangians are essentially infinite series,
every next order giving additional corrections. Even if there is a fixed order to
which one wants to calculate, there is possibly a lot of operators to consider. It
is therefore of interest to find the operator basis, which parametrizes all physical
phenomena in the realm of the given effective theory, but already does not contain
any redundancies.

In general, construction of such basis is immensely difficult because of various
non-trivial relations between them. Nonetheless, it is possible to count the number
of independent operators of a given type, which certainly helps. The goal of this
thesis is to derive the formula for these multiplicities, and to develop all necessary
tools along the way.

The group theoretical approach we will develop was pioneered by Henning, Lu,
Melia, and Murayama [1]. The research paper is rather long (over 100 pages)
and presents multiple approaches, the main one presupposing the knowledge of
conformal representations. Therefore, inexperienced reader can have a hard time
comprehending details as well as main ideas. We will try to complement this.

We assume the reader is well versed in the subjects of linear algebra and differential
geometry. Knowledge of some elementary constructions in group theory, such
as cosets and quotient groups, is also assumed. Otherwise, attempt at a mostly
self-contained exposition was made. All important theory (for our purposes) about
Lie groups and their representations was essentially built up from the beginning,
of course together with all necessary proofs.
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Quick summary

In Chapter (1] we briefly introduce the framework of Effective Field Theories,
giving us background and physical motivation to study the structure of operators.

In Chapter [2| we recognize possible relations between operators and define the
fundamental object of our interest — the Hilbert series — which effectively encodes
information about the independent operators of a given type.

In Chapter [3| we thoroughly build parts of the representation theory of compact
Lie groups, which shall prove useful for computing the Hilbert series.

In Chapter 4| we finally derive the Master Formula for the Hilbert series, utilizing
everything we learned in previous chapters.

In Chapter [5| we apply the developed formalism to count operators for a single
scalar field, and also in a more complex case of the electromagnetic field. We
highlight numerous intricacies, which are present even in these basic theories.
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1. Effective Field Theories

Wondering about physics one may stumble upon a fundamental question:
How can we calculate anything without knowing everything?

We do not have the Theory of Everything, yet we are able to perform vast amount
of precise calculations in practically every domain of the Universe.

The predictive power of physical theories is rooted in the fact, that only a couple
of relevant degrees of freedom play an important role in a given problem. The act
of neglecting the rest is the first step in progress of understanding any physical
phenomena. One could claim that in a certain sense [2]

all physical theories are effective theories,

where the word effective reflects the restriction of a given theory to only a certain
range of effects while being oblivious to the rest.

Just take for example Newton’s mechanics, which often works only with point
masses as idealization of particles with possibly complicated internal structure.
Yet, it offers brilliant tools for our everyday life and explanations of many effects,
ranging from the usage of a lever to the motion of celestial bodies.

Another example can be found in familiar theories of electrostatics, magnetism
and optics, separately being useful subjects without many references between each
other, which were only later realized as a manifestation of unified Mazwell’s theory
of electromagnetism.

Our current “fundamental” theories of electroweak and strong interactions are
formulated in a language of quantum field theory and gauge theory. Together with
classification of all known elementary particles they are contained in what is called
the Standard Model of particle physics. Still, we know that the Standard Model
can not be complete, as it (among other things) lacks account of the General
Relativity. Currently, the Standard Model is often viewed as a low-energy effective
field theory (EFT) of some more complete theory [3].

1.1 Advantages of EFTs

In the rest of the thesis, we restrict ourselves to field theories, that is theories fully
described by the action as an integral of the Lagrangian density over the whole
space-time manifold. Moreover, we will assume the context of particle physics,
where together with Lorentz transformations we often encounter additional gauge
transformations. Naturally, the action must be invariant with respect to both.

To be more precise, the term effective field theory in the context of particle physics
is used in a more strict sense. We will not need most of the following, but to have
some background and motivation for our problem we mention some important
features, examples, and advantages of EFTs.



Definition 1.1 (Effective field theory). A low-energy effective field theory (EFT)
T is described by [2, 4]:

(a) degrees of freedom/particle fields, whose behavior T tries to explain

(b) the domain of validity, usually characterized by energy scale A. For
energies well below characteristic energy scale (E < A), T properly
explains physical phenomena of interest. For energies approaching the
characteristic energy scale (E &~ A) a transition to a more complete theory
or a different and more appropriate EF'T may be necessary.

(c) the perturbation expansion of action St in a suitable parameter (prime
example being E/A), correcting for effects of initially ignored “irrelevant”
degrees of freedom by introducing additional interaction terms.

Remark 1.2. Previous statement about all theories being effective theories can be
viewed as talking about leading-order effective theories.

Example 1.3. Here we just mention some well-known EFTs [5]:

o Fermi theory of weak interactions — effective theory for the weak interactions
at energies below the W and Z° masses.

o Heavy Quark Effective Theory (HQET) — low-energy dynamics of hadrons
containing a heavy quark

e Chiral Perturbation Theory (xPT) — dynamics of pions in a strongly coupled
low-energy limit of Quantum ChromoDynamics (QCD)

e Standard Model Effective Field Theory (SMEFT) — used to analyze deviations
from the Standard Model and search for Beyond Standard Model physics

Remark 1.4. There are numerous advantages of using EFTs, many being hard to
appreciate without a deeper dive. We only list some with a broad relevance [2, 5]:

e cven if we are equipped with a more complete theory, calculations in a certain
energy range can be drastically simplified by using an appropriate EFT

o from the beginning we are neglecting aspects unimportant for the problem
and remain focused on the relevant degrees of freedom

 isolation of relevant degrees of freedom may reveal new symmetries that
otherwise would have remained obscured

e when dealing with yet unknown physics, EFTs provide us with a systematic
perturbative parametrization of physics in a certain energy domain

o the main idea — if we believe our problem can be understood by means
and tools of quantum field theory, we can not go wrong by starting with
“the most general Lagrangian” consistent with our assumptions of locality,
unitarity, Lorentz and gauge invariance, ...

o unified framework utilizing perturbation expansion containing only a few
coefficients can be useful for placing model-independent constraints



1.2 Construction of EFTs

The construction of some particular low-energy EFT can be outlined by the
following prescription [4]:

(1) Identify all relevant degrees of freedom {®;} and symmetries they satisfy.

(2) Construct the most general effective action consistent with locality, Lorentz
invariance and additional (gauge, global, etc.) symmetries,

Sea[{Pi}] = /M

where d is the dimension of the space-time manifold M, Ly, is the kinetic
part of the Lagrangian density, A is the characteristic energetic scale of the
EFT and ¢; is a dimensionless “Wilson coefficient” corresponding to the local
operator O; with scaling dimension A; = A[O;].

(00)

Ekm({q)zaa (I)} +ZAA —d

(3) Calculate physical observables (to the required order of accuracy).

(4) Determine Wilson coefficients ¢; by matching the EFT to the already existent
underlying model or to the experimental measurements.

In this thesis we will focus on a part of the step (2), which has certain freedom in
the choice of the set of operators {O;}. Assuming someone already did step (1)
for us, our goal will be to count all independent operators figuring in the effective
action (oc]). Precise meaning of this will be clarified in Chapter 2]

Steps (3) and (4) are mentioned here only for completeness, nonetheless they are
of paramount importance and can be immensely deep.

For simplicity we restrict our attention only to linearly realized symmetries, and we
will not worry about discrete global symmetries, such as parity, charge conjugation
or time inversion. Throughout the thesis we also assume an implicit Wick rotation
from the Minkowski to the Euclidean space, thus for our Lorentz group we can
take SO(d), since we will ignore inversions.

Of course, explicitly constructing the basis of {O;} would be even better, but it
is in general a formidable task. The next best thing is to at least gather some
information about quantity of operators of different types, which fortunately turns
out to be a feasible goal.






2. The Operator Basis

The notion of operators is probably clear, but before advancing further, it is better
to fix the terminology to avoid possible ambiguities.

Definition 2.1 (Operator, invariant/scalar operator). An operator O is a local
object composed only from the particle fields and their derivatives at a given
point of space-time. An operator is called invariant or scalar if it is Lorentz
and gauge invariant (and also invariant under any other symmetry group).
Only scalar operators can appear in the Lagrangian density, since the action
can not depend on the choice of an observer.

Remark 2.2. Operators naturally form a linear space, since we are free to multiply
them by a constant and add them together. We can thus specify the EFT by the
choice of a single scalar Lagrangian operator £ from the big space of all operators
(actually, it is usually a series in a suitable parameter, see Definition .

As we suggested before, operators with different appearance can lead to the same
physical effect. Equivalently, a mapping from the space of all Lagrangians to the
space of S-matrix operators has nonzero kernel. Unsurprisingly, it is advantageous
to work with a minimal set of operators covering all possible physical phenomena
in a given EFT, thus we come to the following definition.

Definition 2.3 (Operator basis). The operator basis BB of the EFT is a minimal
set of operators leading to all physical phenomena in the realm of the EFT.
We will denote the space of all operators generated by B as KL = Span B.

Remark 2.4. As in any vector space, there is a bunch of equivalent operator bases
for a given EFT. We will loosely refer to any chosen one as the operator basis.

In this chapter we will recognize possible relations/redundancies/constraints
between operators, which effectively lower the number of linearly independent
operators, thus reduce the size of B and the dimension of .

Next, we will define a weighting scheme for categorizing different types of operators,
enabling us to compactly encode reduced information about the operator basis
into a generating function called the Hilbert series, our prime object of interest.
More specifically, it will contain the numbers of independent operators for all
distinct types.

2.1 Equivalence relations between operators

From classical theoretical mechanics we know very well, that the form of the
Lagrangian is not entirely fixed. By performing a transformation to a different set
of generalized coordinates, we visually change the Lagrangian, but the physics is
the same (we have just changed the parametrization of the configuration space).

bt



Note, that terms proportional to the equations of motion are in fact just trivial.
Additionally, total derivative terms do not change the dynamics, as they reduce to
boundary terms in the actions, which do not play a role in a variational principle
with fixed endpoints.

But how does the story play out for an effective quantum field theory? Quite
similarly, the total derivative (divergence) terms do not contribute to the effective
action (under the usual assumption of vanishing particle fields at infinity).
However, in quantum theory we can not eliminate operators proportional to the
equations of motion simply by just substituting as in the classical case.

Nonetheless, we are still able to perform field redefinitions, which allow us to
systematically push operators proportional to the lowest order equations of motion
(which are generated from Ly;,) to a higher order in the perturbation expansion.
A more in-depth explanation is provided by Manohar [5, Chapter 6]. Thus, for the
purpose of counting independent operators, we can simply ignore such operators.

Last, but by no means least, we have relations induced by the finite-dimensionality
of the space-time manifold. To give a simple example, assume we are in d = 2
and we have one scalar field ®. Since in d = 2 the antisymmetrization of 3 indices
is automatically zero, we obtain the following relation between scalar operators
(we first make the antisymmetrization, and after that we contract the indices)

0= o9, d0°9,d0%0, 2020, DDy DD D
= 9°9,90°0,99°0,P + 9°0, D00, 0°9,P + 9°9, DIV, PI*D.P
—09,89°0,89°0,® — 9°0,D0°0, 0, — 90,039, P

—30,,0, 20209, P

U st — —1 -
= 0= 00000PI0P + 200900PI0P — 300PIIPIIP,

where in the last line we just opted for an alternative notation for contractions.

These conditions are analogous to the statement that r > d vectors {v;}/>f

can not be linearly independent, thus invariants created from them obey some
relations. Assuming we are in Euclidean space, by organizing them in the matrix
A = (vy]...|v,) we can compute the corresponding Gram matriz, which is
essentially a matrix of all scalar products v;  v; (AT denotes the transpose of A)

V1*UV; V1*V2 ... V10,
Va*UV; V22 ... V2P,
T
G=AA= ) )
Vrp*V1 Vyp*UVy ... UVp*?,

It is a basic fact from linear algebra that Ker A = Ker A'A, from which follows
that G is singular if and only if {v;} are linearly dependent. We can apply the
same argument for every (d + 1) x (d + 1) submatrix of G, from which we obtain
the so-called Gram determinant conditions asserting that every (d 4+ 1)x(d 4 1)
minor of G is zero, giving us relations between scalar products of vectors {v; }.

Bringing it all together, we conclude our discussion in the following definition.



Definition 2.5 (Operator relations). Operators O,, and O, are considered
equivalent (denoted by O,, ~ O,,), if they satisfy either one of the following
relations or possibly their combination [6]:

(a) Equations of motion — EOM — the usage of field redefinition argument
generates relations of the form
5Skin O/

0,0, & 30.0;: 0,=0,+ .
50,

(b) Integration by parts — IBP — we also have relations of the type
0, R0, & 30:0,=0,+9-0,

since [ m 90 =0, assuming O vanishes at infinity in the case where the
space-time manifold M is non-compact.

(c) Gram determinant conditions — GDC — some operators are trivially
zero by the finite-dimensionality of M, inducing us relations

0, %0, &L Jo

(l{:(,l for d = dim,\/{} : Om _ On + O/(d)

#+0 for d>dim M

Remark 2.6 (Kinematic polynomial rings). Another interesting and useful approach
to counting and even building the operator basis passes to the momentum space
by the Fourier transformation of particle fields, thereby replacing operators with
derivatives by polynomials in momenta. Operator relations are then represented
by relations between polynomials, namely EOM act as on-shell conditions, IBP
manifest as the statement of momentum conservation, and GDC are precisely
Gram determinant conditions between scalar products of particle momenta or
Mandelstam variables. The operator basis is then formed as a certain quotient ring
with the ideal generated by these relations. It is recommended to at least take
a look at the beginning of Section 5 in |1]. However, GDC relations are highly
non-trivial to solve using this approach, whereas they will be efficiently accounted
for within the group theoretical formalism we are going to develop.

2.2 Generating functions, Hilbert series

Consider an EFT with N degrees of freedom (particle fields) {®;}Y,. As it is
desirable to reduce the complexity of full information about the operator basis,
we introduce the concept of operator weight, which defines the operator “type”.

Definition 2.7 (Weight of an operator). Let O be an operator of the form 9" ®",
meaning that it is composed of 7 = (rq,...,ry) powers of & = (Pq,..., Dy)
and n derivatives distributed amongst them. Then we define its weight as

w[O] = ¢"D",

where we use notation ¢" = ¢} ... d}Y.




Remark 2.8. Weighting scheme in Definition [2.7] retains the most information
about the basis while still having the advantage of reducing the full information.
Other weightings can be obtained by a change of parametrization, for example
D t and ¢; — t2%] gives us the scaling dimension weighting, w[O] — tA1°,

Now, we would like to have an object encoding information about the basis, which
in our case is the number of independent operators with a given weight. Notion
of generating functions turns out to be exactly what we look for.

Definition 2.9 (Hilbert series). Hilbert series of a given EFT is a formal series
in complex parameters D and ¢ = (¢;)Y, defined by

H($.D) = 3 wl0] =33 dpnd™ D",
OeB r n=0

where B is the operator basis and d,, = d,, ,yn € Ny is the number of
independent operators in B with the weight ¢"D"™.

In a certain domain, usually for |D|,|¢| < 1, the formal series in the definition
can be interpreted as a converging series defining a holomorphic function.
To obtain simple expressions for Hilbert series, we also include trivial constant
operator with weight 1, which is the only operator with no field content.

Remark 2.10. Hilbert series are usually defined in a context of graded algebras or
their generalizations |7]. Nonetheless, we will always refer to Hilbert series in the
spirit of Definition [2.9]

Remark 2.11. Power of the Hilbert series (or generating functions in general) arises
in the cases, where it can be expressed in a closed form. This can be understood
either in the context of formal power series, or (in domain of convergence) as
really the function obtained by summation of the convergent series.

Remark 2.12. As will be shown several times, a typical summed up Hilbert series
takes the form of N
H= ok with D = [] (1 - w[O]),
0eg

where G is the set of generators, which can be multiplied repeatedly to form
operators of higher weight. Form of the denominator D reflects this fact, which
be can seen by expanding it as a geometric series. The numerator N encodes
additional operators (which upon repetition decompose to operators generated
from G) and possible relations between operators. In the case of a freely generated
basis, the numerator is unity and all operators can be generated from G.

Remark 2.13. Sometimes it is useful to write the Hilbert series as
H(¢,D) = Z ¢"H,.(D), where H,.(D)= Z dpnD".
r n=0

We will refer to H,.(D) also by the term Hilbert series, where we are just considering
operators with a fixed field content, that is of the form 9"®" for a given r.



Example 2.14. Some examples of the Hilbert series are obtained by considering
the theory of N scalar fields in d = 1 with the kinetic term

—_

£k1n({q)17 09, } Z By

l\')

It is particularly simple, because in the absence of the indices there are no
Gram determinant conditions, and every operator is automatically invariant.
Nevertheless, it will be very instructive. For a comprehensive analysis take a look
at the work of Henning, Lu, Melia, and Murayama [6]. We will go through some
of the corner cases:

(1) No relations. This case is trivial, because the operator basis can be easily
guessed, namely it is freely generated by the set {0"®;} withi=1,... N
and n € Ny. In other words, every operator is obtained in the expansion of

N
[[A+ @+ @7 +.. )1+ 0P; + (09:)° +...) (14 8*P; + (8°D;)* +...) - --

1
_H (1—®)(1— 0%;)(1 — ;) - - -

N oo 1
:I1U1—&@Z

i=1n=0

Corresponding free Hilbert series is obtained by substituting (®;, d) for (¢;, D),

H}C\l;eed)'D HHl—'D”QSZ

i=1n=0

(2) Only EOM relations. Considering the kinetic Lagrangian density Ly,, the
relations generated by free equations of motion are 9*®; = 0. Even simpler
than before, because we have 0?°®; = 0 = 9"®; = 0 for n > 2, the operator
basis is now freely and finitely generated by the set {®;, 0®;}Y,, giving us
the EOM Hilbert series of the form

N 1

EOM —
Hy " (¢,D) = g (1—¢:)(1 —Dg;)

(3) Only IBP relations. Relations between di.,, free Operators of the form 0"®" are
formed from dy,,_1 free Operators of the form 9" '®" (with one less derivative)
by performing a total derivative. One particular example in the case of only
one field flavor would be

0~ 00" ') ") = ("®)P" + (r — 1)(0" ' ®)(9P) "2,

Due to linearity of the derivative, we obtain a linearly independent set of
relations from a linearly independent set of operators, with only exception
being the trivial constant operator, which does not generate any condition.
Therefore, we have (d;; denotes the Kronecker delta)

free free
dIBp _ dr drn 1 r 7é 0
bon = dg;” 1 =0

9



Simple reordering of the summation gives us

HEP(,D) = 33 dBP D" = 14+ 30 3 (die — de )" D"

r n=0 7‘#0”:0
=14+(1-D) > Y dr“¢™D" =D+ (1 — D)HY*(D, {¢:}).
r#0n=0

Again, the IBP Hilbert series is given by a straightforward modification of
the free Hilbert series as

N oo 1
Hy (¢, D) =D+ (1-D)[[ ] Do,
i=1n=0 ?

(4) Both EOM and IBP relations. Interplay of both types of relations makes
this problem harder (and therefore interesting), but it is still possible to
find analytic expression using techniques similar to those we will present in
following chapters [6]. We do not have the space to cover it here, but it is
advised for the reader to take a look at its solution (mainly Section 4 of [6]),
probably best as complement to our Chapter [4

In fact, this was really meant as a training toy model for exploring the simplest
possible but already non-trivial computation of operator basis including both
EOM and IBP relations.

A natural question arises:

How do we obtain the Hilbert series in a more general setting, for arbitrary
space-time dimension and field content with possible internal symmetries?

So far we have only encountered the case with d = 1 and no internal symmetries.
Only in this dimension the Lorentz group is trivial and an application of derivative
is always unambiguous. From now on, we always assume d > 2, where each
derivative carries an index representing non-trivial transformation properties. To
construct a Lorentz invariant operator, we are forced to somehow contract all
the indices. Similar thing goes for internal symmetries, both additions bringing
a substantial complexity. It suffices to say that it is far from obvious how to
generalize the discussion in [2.14!

Nonetheless, the toy model in[2.14 has proved to be full of inspiring lessons, mainly
the case (4), paving the way for vast generalization developed by the same authors
— Henning, Lu, Melia, and Murayama [1]. In the next chapter, we will start the
preparatory work essential for systematic treatment of our problem.

10



3. Representations of Lie Groups

Groups are omnipresent in the realm of mathematics and physics, and so are
manifolds in the context of field theories. It is impossible to go even past the proper
formulation of the physical theory without specifying transformation properties of
the present particle fields. Since everything plays out on a smooth manifold, the
corresponding symmetry groups are themselves often smooth manifolds.

Groups and their representations will precisely turn out to be the tools we need
to systematically count the Hilbert series. Idea is that by continuously being
aware of the transformation properties — representations — of different operators,
we can automatically rule out operators that generate GDC conditions, and also
project out the number of only invariant operators. Furthermore, we will learn to
project out the number of operators corresponding to any representation, which
will be crucial for adressing IBP relations.

In Section we will introduce the notion of Lie groups as well as particular
examples we are interested in. Moreover, by studying their differential structure,
we will be able to show unique existence of the invariant Haar integral on compact
Lie groups, on which much of the following results build upon.

In Section we will start the study of group representations. By borrowing
concepts from linear algebra we will be able to obtain wide range of representations
describing various transformation properties of different objects.

In Section we will dive deeper in the representation theory with the goal
to systematically examine the structure of representations. We will introduce
the notion of irreducible representations and show that any finite-dimensional
representation of a compact Lie group decomposes to such atomic pieces.

In Section we will finish our endeavor to find the multiplicities of irreducible
representations in any given representation by deriving the projection formula. It
works by assigning characters to corresponding representations and integrating over
the group, utilizing the fact that irreducible characters turn out to be orthonormal.

In Section we will extend our knowledge to the graded representations, which
enable us to work with countable number of representations in parallel, since they
are in direct relation with generating functions.

In Section we will once again return to direct study of compact Lie groups.
We will introduce numerous important concepts, such as mazimal torus and roots
of a group, ultimately leading to the Weyl integration formula, which provides us
with explicit means of performing the integral in the projection formula.

We only introduce important notions from group and representation theory, which
shall prove useful for our problem. This chapter is mainly based on the beautiful

works of Brocker and Dieck [§], Fulton and Harris [9], and Sepanski [10].
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3.1 Compact Lie groups

Lie groups are essentially a harmonious combination of the algebraic structure
of a group and the analytic and geometric structure of a differentiable manifold.
They underlay the fundamental theory describing the continuous transformations.

Definition 3.1 (Lie group). A Lie group G is a group that is also a differentiable
manifold, for which the group multiplication m: G x G — G is a smooth map.

Remark 3.2. It can be shown that the definition of a Lie group already implies
also the smoothness of the inverse map ¢ : G — G, g+~ g~ ' [§].

Remark 3.3. We will use e or 1 to denote the identity of a group . For ease of
notation we write just gh instead of m(g; h) for any g,h € G.

Some Lie groups can have similar structures. To get a grasp at what it means, we
introduce the elementary notion of homomorphisms.

Definition 3.4 (Homomorphism of Lie groups). A homomorphism of Lie groups
is a smooth map ¢: G — H between two Lie groups G and H, such that the
group operation is preserved, that is

¢(gh) = ¢(g)¢(h) forall g,h € G,

where the multiplication on the left side is in G and on the right side in H.

Remark 3.5. There always exists a trivial homomorphism, which maps every
element of GG to the identity element of H. If homomorphism between groups is
non-trivial, it is a sign they share certain similarities. Bijective homomorphism is
called isomorphism, corresponding groups are then called isomorphic (G = H),
which means they are identical up to differences in the notation of their elements.

Example 3.6. Every finite-dimensional vector space V' with its additive group
structure is a Lie group. By any choice of basis it is isomorphic to R4™V

We can construct new groups by a simple combination of already known ones.

Definition 3.7 (Direct product of Lie groups). Let G and H be Lie groups. Then
their direct product G = G x H is also a Lie group, where we understand it
both as a direct product of their manifold structures and their group structures.
Namely, the group multiplication of g, gs € G is defined component-wise via

g182 = (91; h1)(92; he) = (9192; hiho), where g1,92 € G and hy, hy € H.

Example 3.8. The torus T™ (n € N) defined by

n

—_—~
T =R"/Z" = (R/Z)" = (S")"=S" x --- x §*
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is a Lie group, where the circle group S' = {z € C | |z| = 1} is the unit circle in C
viewed as a multiplicative subgroup of C* = C\ {0}. The isomorphism R/Z = S!
is given by the map R/Z — St: t s ™,

o T? >~ S x St

G| T =(R/Z) |

v

Figure 3.1: Illustration of alternative isomorphic definitions of the torus T2.

Example 3.9 (General linear groups). Let V' be a finite-dimensional vector space over
R or C. By End(V') we denote the space of endomorphisms of V', that is the vector
space of linear maps from V' to itself. Very important is the set GL(V') C End(V)
of automorphisms (invertible endomorphisms) of V. Equivalently, we have

GL(V) = {A € End(V) | det A % 0}.

Determinant is a continuous function, thus GL(V') is an open subset of End(V).
It is easy to see that GL(V') has the structure of a differentiable manifold and in
coordinates the group operation is the matrix multiplication, which is smooth.
Therefore GL(V) is a Lie group, particularly we have the General Linear groups

GL(n,R) = GLg(R") and GL(n,C) = GLc(C™),

which are canonically isomorphic to the groups of invertible n x n matrices over R
and C, respectively. Thus, we can think of GL(n,R), GL(n, C), and their subgroups
(see Example [3.10) as matriz groups with the operation of matrix multiplication.

Example 3.10 (Special Orthogonal and Unitary groups). We will be mostly interested
in compact Lie groups, which will represent our Lorentz and gauge groups. It is a
standard textbook result, that a closed subgroup of a Lie group inherits the Lie
group structure [8]. We therefore obtain the following compact classical groups:

(a) the Orthogonal O(n) and the Special Orthogonal SO(n) groups defined by
O(n) ={g € GL(n,R) [ gTg =1}, SO(n) ={g € O(n) | detg = 1},

where g7 denotes the transpose of g. Group O(n) splits into two connected
components with the values £1 of the determinant, one being SO(n).

(b) the Unitary U(n) and the Special Unitary SU(n) groups defined by
Un) = {g € GL(n,C) | g*g =1}, SU(n)={g € U(n)|detg=1},

where g = g7 denotes the conjugate transpose of ¢g. It can be shown that
both U(n) and SU(n) are connected.

13



These groups preserve the standard inner products on R™ and C”, particularly
the norms. Therefore it can be seen they are compact, since they are closed and
bounded in the finite-dimensional vector spaces End(R") and End(C").

Remark 3.11 (Symplectic groups). There is one other compact Lie group family,
namely the symplectic groups

Sp(n) = {g € GL(n,H) | gg = 1},

where H denotes the quaternions and g* denotes the quaternionic conjugate
transpose of ¢g. Since understanding a noncommutative division algebra H takes
some work and we will not need the symplectic groups, we refer the interested
reader to practically any book on the subject of Lie groups [8-10].

Remark 3.12. More generally, classical groups are defined as automorphism groups
that preserve a bilinear or sesquilinear form on finite-dimensional vector spaces
over R, C, or H. For example, O(n) is defined as a subgroup of GL(n, R) preserving
some symmetric positive-definite bilinear form @): R™ x R™ — R, that is

Q(gv,gw) = Q(v,w) for any g € O(n) and v,w € R".

Since we can always bring such form () by a change of basis to the standard scalar
product on R™, we precisely obtain the definition in (a) of Example [3.10]

What can we reveal about the Lie groups (namely the compact ones) by studying
the interplay of their algebraic and analytic structures? Perhaps not so surprisingly,
many strong results are just waiting to be uncovered. We will start by introducing
the tensor fields which are adjusted to the group structure of a Lie group.

Definition 3.13 (Left translations, left-invariant fields). Let G be a Lie group.
The left translation by g € G is a diffeomorphism L,: G — G defined by
Lsh = gh for any h € G. The inverse is given by L;l =Ly

A tensor field (section of the tensor bundle) on G is called left-invariant if
it is invariant under the induced action of left translations. That is, a left
invariant tensor field A € Sect TPG satisfies

L,A=A forevery g€ G,

where L, denotes the pushforward by L.

Remark 3.14. We implicitely used the fact that L, is diffeomorphism, thus we
can pushforward whole vector field to obtain another vector field. We also extend
the definition of pushforward to forms by L, = (L;)*1 = L7 ..

Remark 3.15. Analogously we can define the right translations by R,h = hg for
any g, h € GG, and the corresponding right-invariant tensor fields.

It follows that left-invariant fields are uniquely given by their value at the identity.

14



Proposition 3.16 (Left-invariant lift). The tensor space Tc/G' at the identity
of a Lie group G is canonically isomorphic to the space of the left-invariant
tensor fields Sect, TG C Sect THG on G. We denote this isomorphism by

Ly: TegG — Secty, TZI’G
a— A=4,,

and it is defined by £,|, = Ly.a.

Proof. To any left-invariant tensor field A we can assign uniquely a tensor A|,
at the identity, which follows from (we use the left-invariance of A)

A|g = (Lg*A)|g = Lg*(A|e) =Ly,

g > A=Y/ Al
The map A|. L A s evidently one-to-one and linear, thus isomorphism. O

Remark 3.17. Since the space of top-dimensional forms ASG at the identity of G
is one-dimensional, and pushforward of a nonzero form by a diffeomorphism L,
leads to a nonzero form, we obtain a unique (up to multiplication by a constant)
left-invariant volume form on G. Specially, every Lie group is orientable.

Now we restrict ourselves to the case of a compact Lie group G, where it is possible
to perform integration over the whole G without any problem. We will show there
actually exists a unique normalized invariant Haar integral.

Theorem 3.18 (Invariant Haar integral). Let G be a compact Lie group and
h € G be any element of G. Denote by C(G) the vector space of continuous
real-valued functions on G. Then there exists the invariant Haar integral

/:O(G)—>R

fH/fELﬂw@,

and is uniquely determined by the following properties:

(a) It is linear, monotone, and normalized, that is / dg = 1.
G

(b) It is left invariant, that is /Gf(hg) dg = /Gf o Ly(g)dg = /Gf(g) dg.

Proof. Existence follows from Remark [3.17] giving us a volume form w on G,
with respect to which we define the integral. Property (a) is then satisfied by
properly rescaling the w. Property (b) follows from the left-invariance of w by

KywmmzLHde=LUdmmw=[}ano=Awifuzﬂﬂw,

where we used that L is orientation preserving (since Lj preserves w).
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We will prove uniqueness by comparing all left-invariant integrals with a single
right- invariant integral (can be constructed similarly as the left-invariant one).
Let f— f G g) dg be any integral with the properties from the definition, and
f— f P 5g is a given right-invariant normalized integral, that is

/G bg=1 and /G F(gh)ig = /G 1(9)5g

Then for any f € C(G) by use of left-invariance/right-invariance, normalization,
and Fubini’s theorem to exchange the order of integration, we obtain

/Gf(g)dg:/G</Gf( g)dg>6h=/G(/Gf<hg>dg>5h
- /G ( /G f(h9)5h> dg = /G ( /G f(n >6h> dg = /G F(h)oh

This is sufficient to establish uniqueness. O

Corollary 3.19 (Properies of invariant Haar integral). Let G be a compact Lie
group, h € G be any element of GG, and ¢ be any automorphism ¢ : G — G
(homomorphism from G to itself). Then the invariant Haar integral satisfies

/f dg(l)/Gf(hg)dg /f ) dg “"’/f (g7) dg (4)/f0¢

Proof. Suppose ¢ : G — G is a diffeomorphism, then the map f +— fG fop(g)dg
is clearly a normalized integral. If it happens to also be left-invariant, that is

JofoLpoy(g)dg = fG o (g )dg, from the uniqueness (see Theorem it
must be that [, f o ¢(g)dg = [, f(g) dg. We apply this idea (x) to prove:

(1) Follows directly from the definition of the invariant Haar integral.

(2) Choose ¢(g) = Ri(g) = gh and any k € G. Left-invariance follows from
/foLkoRh<g>dg=/f(ksgh)dgz/foRh(kg a9 ® [ 1o Rilo)dg
€ G €

(3) Choose p(g) =t(g) = g~'. We can use already proved (2) to show

/foLhOL dg—/fhg dg—/foLgh ) dg ()/foa

(4) Choose p(g) = ¢(g). By homomorphism property (see Definition we have

/G foLnodlg)dg = /G f(he(g)) dg = /G fod(6™ (h)g)dg L /G foo(g)dg

Application of the idea (%) finishes the proof. O

Remark 3.20 (Haar measure). We sometimes refer to dg figuring in the invariant
Haar integral as the (invariant) Haar measure.
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Remark 3.21. Every finite group is actually a zero-dimensional compact Lie group
(with discrete topology). Everything what we will present about representations
applies to finite groups with the appropriate transition from integrals to sums.
Historically, it was knowledge about finite groups that was extended to the special
case of compact Lie groups by existence of the Haar measure.

The importance of the invariant Haar integral on compact Lie groups can not
be understated. We will fundamentally use it in Sections and to obtain
invariant objects by averaging over the group.

For now, we leave the direct analysis of the group structure, as we will approach
them somewhat indirectly through their representations. We will return once
more to their differential geometry in Section [3.6]

3.2 Representations

Groups themselves can be pretty abstract entities. However, their properties can
be probed by examining their action on certain simple structures we understand
very well, in our case vector spaces. This is the subject of representation theory,
which in a group structure preserving way assigns to every group element a linear
transformation of a vector space. In essence, it is able to reduce some problems in
abstract algebra to problems in linear algebra.

Definition 3.22 (Representation). A representation of a Lie group G on a
finite-dimensional complex vector space V is a Lie group homomorphism
p: G — GL(V). The dimension of the representation V is dimV = dim¢ V.

Remark 3.23. When there is little ambiguity about the map p, we call V itself a
representation of G. In that case we say that g has an action on V. We often write
glv for p(g) and directly gv for p(g)(v), where v € V. For a visual representation
of the notion of group representations see Figure (3.2

Remark 3.24. We could extend the definition to infinite-dimensional vector spaces
or to vector spaces over different fields F, for example R. Since we will not find
much use for such generalizations, and sometimes we will distinctly use finite-
dimensionality and properties of complex numbers, we assume finite-dimensional
representations over C unless stated differently.

Example 3.25. Some elementary representations appear automatically:

(a) Trivial representation — every group element is represented by an identity
operator on any given vector space V. Although this does not seem exciting
at the first sight, we are frequently interested in objects which are invariant
under the action of the group.

(b) Standard representation — the matriz groups GL(n,R), GL(n,C), and their
subgroups (see Examples|3.9/and [3.10]) are canonically represented by matrices
on the corresponding complex vector space C" (we understand R C C).
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Figure 3.2: Illustration of a representation p of group G on vector space V. A group element
g € G is represented by a linear operator p(g) € GL(V), in particular transforming a vector
v € V to the vector v’ = p(g)(v) € V.

To enlarge our collection of representations, we will borrow some concepts from
linear algebra, which allow us to build more elaborate representations out of
known simpler ones. Typical and the most basic constructions are the direct sum
and the tensor product of vector spaces.

Definition 3.26 (Direct sum and tensor product of representations). Let V' and
W be representations of a group GG. Then the direct sum V & W and the
tensor product V- @ W are representations with the actions of any ¢ € GG
defined through relations

gvdw)=gvdgw, gvew)=gvegw,

forany v € V and w e W.

We can also induce representation of V' on the dual space V* = Hom(V,C) of
linear maps on V' by respecting the duality (a, v) = a(v), that is by requiring
(9ex, gv) = (p*(9)(@), p(9)(v)) = (@, v) forall g € G, € V* and v € V.

Definition 3.27 (Dual representation). Let V' be a representation of a group
G. Then the dual representation p*: G — GL(V*) is defined by

p*(9) = p(g™)T forany g € G.

Now that we have already defined the dual representation and the tensor product
of representations, we can similarly realize representation on Hom(V, W), the
space of linear maps between vector spaces V and W (which themselves are
representations), motivated by the canonical isomorphism Hom(V, W) =2 V* @ W
for finite-dimensional V' and W.
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Definition 3.28 (Hom(V, W) representation). Let V' and W be representations
of a group G. Then Hom(V, W) =2 V*® W is a representation with the action
of any g € GG defined through relation

(9¢)(v) = gp(g~'v)  for any ¢ € Hom(V,W),v € V.

It is often interesting to study maps between representations, which preserve their
structure (in similar sense as homomorphisms preserve group structure).

Definition 3.29 (G-map, Homg(V, W), equivalent representations). A G-map
(G-linear map) is a linear map ¢: V' — W between representations V and W
of a group G, such that it preserves the group representation structure, that is

o(gv) = gp(v) forallge GiveV.

We denote by Homg (V, W) the space of all G-linear maps between V' and W.

Representations V and W are equivalent (V = W) if there exists a bijective
G-map between them, which means they are identical up to a change of basis.

Remark 3.30. Comparing Definitions and we observe, that Homg(V, W)
is just a subspace of Hom(V, W) that transforms trivially under action of G.

Remark 3.31. Previous definitions are equivalent to the statement, that following
diagrams are commutative for every g € G:

Vv —*-cC | Vv W
gl ll gl lg g g
%4 — C |4 —5 W Vv — W
(a) V* = Hom(V,C) (b) Hom(V, W) (¢) Homg(V, W)

Figure 3.3: Commutative diagrams corresponding to Definitions |3.27]7 |3.28| and |3.29}

3.3 Complete reducibility and Schur’s Lemma

We have already encountered numerous possibilities, how we can construct other
representations from already known ones, most simply by taking the direct sum.
Steps in the other direction would be similarly, if not more, of great interest. If we
were able to systematically decompose any representation to its smallest pieces,
understanding just them would be enough, leading to a major simplification.

In order to decompose a given representation V', there necessarily must exist some
proper subspace of V' that is somehow closed under the action of a group. We
can create another representation by restricting the group on such a subspace.

Definition 3.32 (Subrepresentation). A vector subspace W of a representation
V of a group G is called G-invariant or a subrepresentation if gw € W for
every g € G and w € W. Thus, W <V itself is a representation of G.
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Now we define “atomic” representations, in which the action of the group already
mixes up the whole space, therefore they can not be decomposed any further.

Definition 3.33 (lrreducible representation). A nonzero representation V' is
called irreducible if the only subrepresentations are the zero space {0} and
the whole V. Otherwise, V' is called reducible.

It would be ideal if any representation could be decomposed into irreducible
representations. In the case of general Lie groups, this is not the case. However, as
we will show later, representations of compact Lie groups satisfy this property.

Definition 3.34 (Complete reducibility). A representation V' of a group G is
called completely reducible if it is a direct sum of irreducible representations.

But first, to have a glimpse at how useful is to work with irreducible representations,
we present an essential tool in the Representation Theory as a whole.

Theorem 3.35 (Schur’s lemma). Let V and W be irreducible representations
of a group G, and ¢: V — W be a G-map between them. Then following
results hold:

(1) Either ¢ is an isomorphism, or ¢ = 0.
(2) If V=W, then ¢ = A1 for some X € C.

Proof. Subspaces Ker ¢ and Im ¢ of a G-map ¢ are G-invariant, which follows
directly from Definition Claim (1) then follows from irreducibility of V' and
W, because only possibilities are that either Ker ¢ = {0} and Im ¢ = W, or that
Kerp =V and Im ¢ = {0}.

Since V' is a finite-dimensional vector space over algebraically closed field C, there
exists a solution A € C of the equation det(p — A1) = 0. Claim (2) then follows
from (1) applied to a G-map ¢ — A1, giving us ¢ — A1 =0 = ¢ = Al. O

Corollary 3.36 (Dimension of Homg-space between irreducible representations).
Let V and W be two irreducible representations of a group G. Then

1 fv=w

dim Homg(V, W) = {0 VW

Proof. From the claim (1) of Theorem follows, that there exists a nonzero
v € Homg(V, W) if and only if V= W.

In the case V' = W we fix a bijective ¢y € Homg(V, W). If also ¢ € Homg(V, W),
then ¢ o ;' € Homg(V, V), and from the claim (2) of Theorem follows

wopy' =M1 forsome A€ C = Homg(V,W) = Cypy. O
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Now we embark on the journey of proving the complete reducibility of compact
Lie group representations. After that, Theorem and mainly Corollary

will result in some far-reaching consequences.

We will exploit the existence of the invariant Haar integral to construct inner
product compatible with the structure of the group. This will enable us to
decompose any reducible representation to its proper subrepresentation and
corresponding orthogonal complement, which will also be its subrepresentation.

Definition 3.37 (Unitary representation). A representation V' of a group G
is called unitary if there exists a G-invariant sesquilinear inner product

(o,0): V x V — C, that is

(gv, gw) = (v,w) for any g € G and v,w € V.

Remark 3.38. Any g € G is thus represented on any unitary representation V' by
a unitary operator gly. So g|y is also a normal operator, hence diagonalizable.

Theorem 3.39 (Unitarity of compact Lie group representations).

Let V be a representation of a compact Lie group G. Then V' is unitary.

Proof. Let (e, @) be any inner product. We will average it over the whole G using
the invariant Haar measure dg (see Theorem [3.18)). Since integration preserves
sesquilinearity and positive-definitness, we can define the inner product

(o, 0) = /(go,g°> dg.
G
G-invariance of (e, e) follows from Corollary [3.19, simply by calculation

(hv, hw) =/G<ghv,ghw> dg:/G<gv,gw> dg = (v, w),

for any g € G and v,w € V. ]

Corollary 3.40 (Complete reducibility of compact Lie group representations).
Every representation V of a compact Lie group G is completely reducible.

Proof. Suppose V is reducible with W <V being its proper subrepresentation.
From Theorem we obtain a G-invariant inner product (e, e), thus we have
the decomposition V = W @ W+, where the orthogonal complement W+ of W is
also a proper subrepresentation of V', since

(gv,w) = (v,g'w) =0 forany g€ G,v € W+ w e W.
We finish the proof by induction and the finite dimensionality. O
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Therefore, to study any finite-dimensional representation of a compact Lie group
it is enough to understand the set of irreducible representations, and to know how
to compute multiplicities in its decomposition.

Corollary 3.41 (Decomposition of compact Lie group representations). Let V' be
a representation of a compact Lie group GG. Then there exists a decomposition.

k
V=@V =t e- e Vit
i=1
where the V; are distinct irreducible representations with multiplicities a;

given uniquely by
a; = dim Homg(V;, V).

Proof. Existence follows from Corollary [3.41] Multiplicities are calculated as

f Home (Vi, V;™)

J

k
dim Homg(V;, V) = dim Homg (v v.@“j) = dim
=1

oL
-
i

_ idimHomg(Vi, Vi) = fj a; dim Homg (V;, V;) = a;,
=1 I=1 5. from Corollary [5.30
where we have used the isomorphism (valid for arbitrary representations U, V, W)
Homg (U, V & W) = Homg (U, V') & Homg (U, W)
following from the basic linear algebra equivalence
U'g(VeW)=UaV)d (U W). O
We will show one last consequence of Theorem [3.39] namely that dual represen-

tations of unitary representations are actually isomorphic to so-called conjugate
representations, where multiplication by scalars from C is always conjugated.

Corollary 3.42 (Equivalence of V' and V*). Let V be a representation of
a compact Lie group GG. Then we have an equivalence of representations
V = V*, where the conjugate representation V has the same underlying
additive structure as V', but is equipped with a new scalar multiplication
structure -': C x V. — V given by z /v = Zw.

Proof. Define a bijective linear map ¢ : V — V* by pv = (v, e) for any v € V,
where (e, ) is G-invariant inner product from Theorem To see that ¢ is a
G-map, and therefore realizes the equivalence V' = V*  we calculate

9(pv) = (v,g"'e) = (gv, ®) = p(gv),

where the first equality follows from Definition of the action of G on V*, and
the second from G-invariance of the inner product. ]

Remark 3.43. From the definition of V we have g| = g|v for any g € G.
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3.4 Characters and the Projection formula

We would like to explicitly compute the factors in the decomposition of a represen-
tation into the irreducible ones. The first step will be finding an explicit formula
for the projection onto the direct sum of trivial factors in the decomposition. To
start, we introduce a notation for this trivial factor.

Definition 3.44 (Fixed point set). Let V' be a representation of a group G.
Then the fized point set is a subrepresentation of V' defined by

Vé={veV]|gv=mwforalgeG}

We again exploit the idea of averaging over G already used in the proof of
Theorem to obtain a G-invariant projection.

Proposition 3.45 (Projection onto V). Let V be a representation of a compact
Lie group G. Then the map p € End(V') defined using the vector integration

for any v € V by
p(v) = / gvdg
G

is a projection of V onto V&,

Proof. Using invariance of dg for any h € G we have

hp(v)E/thvdgz/vadng(v),

so Imp C VY. Conversely, if v € V&, then

p(v)z/gvdg:/'vdg:v/dgzv,
G G G

so V¢ c Imp and p = pop is a projection onto Imp = V. O]

Remark 3.46. We can calculate the dimension of V¢ using a standard property
of projections, that is (we can commute Tr and integration by linearity)

dim V€ = Tr(p) = Tr( / 9|Vdg> - [ ol ag

which follows from p|y¢ = 1,¢ and a convenient choice of basis adjusted to the
decomposition V = Kerp @ Imp = Kerp @ V. For a visual intuition about the
projection map p see Figure (3.4}

Previous remark is a straightforward demonstration, that traces of g|y appear
naturally when one is exploring the structure of representations. This suggests
the fundamental notion of characters, basis of Character Theory.
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Figure 3.4: Tllustration of Proposition where we project vector v € V' onto the trivial
subrepresentation V¢ of the representation V' of the group G. We imagine G = SO(2) = S*
and V as a 3-dimensional real representation of GG, which decomposes as V =S @& R, S being
the standard representation on the z-y plane, and R being the trivial representation along the
z-axis. As the projection map p averages over the whole group G, the action of g € G rotates
the components of the vector in the z-y plane, thereby only leaving the component along the
z-direction, which is precisely v € V.

Definition 3.47 (Character). Let V' be a representation of a group G. Then
its character x,,: G — C is a function on G defined by

Xy (9) = Tr(glv) = Try(g) forany g € G.

Remark 3.48. Note that x,,(e) = Tr(1ly) = dim V.

Characters are condensed form of information about the representation. For
finite groups and compact Lie groups they give us a unique (up to isomorphism)
characterization of their finite-dimensional representations, for general Lie groups
they still encode very important properties. Before we state the fundamental
result concerning the calculation of multiplicities in decompositions, we first find
out some useful properties of characters.

Proposition 3.49 (Properties of characters). Let V' and W be representations
of a compact Lie group GG. Then following properties hold:

(1) Characters are class functions, meaning they are invariant under the
conjugation map, that is x,,(g) = Xv(hghfl) for any g,h € G.

(2) If V=W, then x,, = x,,- Specifically, x,.. = x3 =X, -
(3) Character of direct sum V & W is given by Xy o, = Xy + Xyp-
(4) Character of tensor product V' @ W is given by Xy, = Xy Xy -

(5) Character of the dual space V* satisfies the relation x,.(g) = x,,(¢7")-

Proof. We fix any g,h € G. Claim (1) follows from the cyclic property of Tr.

Action on equivalent representations (see Definition [3.29)) differs just by a change
of basis, with respect to which the trace is invariant. Second part of claim (2)
then follows from Corollary [3.42]
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Actions of g are automatically diagonalizable on V' and W (see remark .
Denote by {a;} and {f3;} the eigenvalues of the action g on V and W, respectively.
Using Definition we obtain that {a;} U{f;} and {a;0;} are eigenvalues on
V@ W and V @ W, from which the claims (3) and (4) follow.

Claim (5) follows from Definition and the fact that Tr(A) = Tr(AT). O

We are now fully prepared to state the main result of this section.

Corollary 3.50 (Projection formula for the multiplicity). The multiplicity a; of
the irreducible representation V; in a decomposition of a representation V' of
a group G is given by

@) ,. (2) _ 3)
o @ dimHome(Vi V) @ [ v 0)ds @ | X vl do

Proof. Equality (1) was already proved in Corollary [3.41] Equalities (2) and (3)
follow from Remark applied to the representation Hom(V;, V') by noticing
Homg(V;, V) = Hom(V;, V)¢ (see Remark , and applying Proposition m
to the equivalence Hom(V, W) X V* @ W =V @ W, that is

Xttomvary(9) = Xpeaw (9) = Xy (97X (9) = Xpow (9) = X, (9) X (9). O

Remark 3.51. Remark is a special case of Corollary where we take the
projection onto the trivial representation V; = C, so glc =1 = x,,(9) = 1.

Remark 3.52. Irreducible characters (characters of the irreducible representations)
turn out to be orthonormal, which follows from Corollary and Corollary [3.36]

Remark 3.53 (Quick summary). In the last two sections we learned, that every
finite-dimensional representation of a compact Lie group is completely reducible
(Corollary [3.40). The decomposition is given uniquely (up to isomorphism) by the
multiplicities of corresponding irreducible representations (Corollary , which
can be calculated just using the character of the representation (Corollary .
Thus, characters give us a unique characterization up to isomorphism.

3.5 Graded representations and characters

We learned a fair amount about the finite-dimensional representations, enough to
be capable of extracting interesting information about the operators by assigning
them appropriate representations and characters. Our goal is to find the Hilbert
series H (¢, D) encoding information about the operator basis containing infinite
number of operators.

It is hopeless to work with one operator representation at a time, not only
efficient-wise, but also because we have non-trivial IBP relations between them.
Thankfully, we can organize them to so-called graded representations and calculate
corresponding characters all at once.
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We start by realizing that the tensor product of representations V@ W corresponds
to the representation of two distinguishable particle fields, one transforming under
V', other under W. Thus, if we want n distinguishable copies of the same particle
field, we just work with the nth tensor power.

Definition 3.54 (Tensor power of representation). Let V' be a representation of
a group G. Then the nth tensor power V®" is (by convention V®' = C)

Ve =V ...V fornéeN.
—_—

n

But all known physical particles are in fact indistinguishable. Exchange of two
particles cannot change any physical observable, so the wave-function can only
change by a phase. Two subsequent exchanges of the same pair is an identity
operation (ignoring peculiarities such as anyons), so the change of phase can only
be by a factor of +, corresponding to the bosonic/fermionic particles.

Since action of the group on V®" commutes with the permutation of the factors,
fully symmetric subspace S™(V) and fully antisymmetric subspace A*(V) are
actually subrepresentations of V¥". In the following the symmetric product Qsym
is just omitted and the exterior product is denoted as ordinary by the wedge A.

Definition 3.55 (Symmetric and exterior power of representation). Let V' be
a representation of a group G. Then the nth symmetric power S™(V) and
the nth exterior power /\n(V) are subrepresentations of the nth tensor power
V®n with actions of any g € G given by

gvr---v,) = (gu1) - (gvn), glor A= Awvy) = (gui) A+ A (gon),

for any {v;}"., C V. By convention let S°(V) = /\O(V) =C.

Remark 3.56. This construction is further generalized by Schur functors S* [11].

We can extend notions of tensor, symmetric, and exterior power to construct
corresponding algebras. But first, we define the notion of graded representations.

Definition 3.57 (Graded representation). Let V' be a representation (possibly
infinite-dimensional) of a group G. It is called a graded representation if it
has the form of .
V=tv,,
n=0
where V,, is a finite-dimensional representation of G for each n € Nj. For now,
the factors t" are just labels helping us to distinguish different graded pieces.

Remark 3.58. We defined V,, to be finite-dimensional, but we would often like
them to be themselves graded representations. Standard reordering of summation
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makes this requirement reasonable in the sense of Definition [3.57]
Uk

V=@, =B (@ qrwn,T> _ DD, — D ( D t”q’"Wm),
n=0 n=0 r=0 n=0r=0 k=0 \n+r==k
where the representations W, , are already finite-dimensional, thus also Uj.

Alternatively, we could extend the definition of graded representations to utilize
grading with multiple labels from the start.

Natural examples of graded representations arise from algebra by considering the
tensor algebra and its quotients, the symmetric and the exterior algebra.

Definition 3.59 (Tensor, symmetric, and exterior graded representations). Let
V be a representation of a group GG. We define the tensor, symmetric, and
exterior graded representations of V| respectively, as

T(V) Eé.ét"‘/@", S(V)Eé)t”S”(V), AV) = EE " N(V).

Remark 3.60. Note that for a finite-dimensional vector space V' the direct sum in
the definition of the exterior graded representation terminates, because there are
no non-trivial n-forms with n > dim V. We still understand /\(V) as a graded
representation, just for n > dim V' we have only trivial zero representations.

Remark 3.61. We say that S(V) and /\(V) are graded subrepresentations of T(V),
since they are subrepresentations for every graded piece.

If we want to calculate some property of a graded representation, it would be
often useful to know which graded piece contributed by what amount. This is
where the labels will play a fundamental role. Take for example the dimension.

Definition 3.62 (Graded dimension). Let V be a graded representation of a
group G. Then its graded dimension dim; V is a formal series in a complex
parameter t defined by

dim, V = Z t" dim V.

n=0

Remark 3.63. The use of labels enables us to extract useful information even in
cases, when the ordinary dimension of V' would be simply just infinity.

Remark 3.64. The graded dimension of V' in the context of Remark is a
series with two parameters, greatly helping us to identify the former grading.

Remark 3.65 (/C as a graded representation and H (¢, D) as its graded dimension).
The space K = Span B in Definition can be understood as a graded representa-
tion of the Lorentz (and possibly gauge or some other) group, with grading given
by Definition 2.7 Every graded piece is composed of trivial representations, one
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for each independent operator of a given weight, since all operators in B must be
invariant. By comparing Definition with Definition we recognize that

dim(¢,7D) ,C = H(¢, D),

thus the Hilbert series H is the graded dimension of the representation X = Span B.
That is actually why the coefficients of H(¢, D) are denoted as d,.,,, because they
are dimensions of the corresponding graded pieces.

For efficient manipulations it is essential to extend the definition of characters to
graded representations. Graded characters will play a fundamental role in the
computation of the Hilbert series.

Definition 3.66 (Graded character). Let V be a graded representation of a
group G. Then its graded character x,, is a formal series on G in a complex
parameter ¢ defined by

Xy (t9) =D t"x,, (9), foranygeG.
n=0

Remark 3.67. In particular, we have x,,(t; ¢) = dim; V', see Remark (3.48|

Remark 3.68. Similarly as in Corollary [3.50, we can use graded character x,, to
obtain graded multiplicities of any irreducible representation W in V' as

dimy ay = dim; Homg(W, V) = > t" dim Homg(W, V,) = / X (9) Xy (8 9) dg .
¢

n=0

Remark 3.69 (Alternative formulation of graded representations). In the light of
Definition [3.66] it appears as the nth graded piece V;, is also being scaled by the
factor of t" (in addition to the ordinary action of g on V;, represented by gly, ).
Indeed, we can give an alternative formulation of Definition [3.57], giving a precise
meaning to the labels ¢".

First, we extend our group by a scaling group of non-zero complex numbers with
multiplication operation, that is (see Definition [3.7)

G=GLIC)xGE=(C\{0}) xG=C* xG.

By understanding C as a standard representation of GL(C) and defining repre-
sentations C,, on C just by modifying the action of t € C* to t|c, = t", we can
distinguish different graded pieces V,, by constructing the graded representation

VE@VRE@Cn®Vn,
n=0

n=0

with the action of g = (¢,g9) € G on v € V defined by

gv=(t9) lé vy,

= Pt'glv,vn, wherev, € C,®V,.
n=0
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Note, that V,, is isomorphic to C,, ® V,, as a complex vector space, but not as
a representation of a group G. Factors of C, just “charge” graded pieces V,,,
granting them a scaling action. Now we can easily see, that we reproduced

Xy(8) = Tr(glv) = Tr(@ t"glvn> =Y t"x, (9), foranyg=(tg)eG.
n=0

n=0

Since most of the time we work only with a single group element g = (¢; g) with
possibly multiple scaling parameters t = (¢4, ...,t;), we can think of them as just
being labels, just like in Definition [3.57] Nonetheless, in Corollary we really
need to use the interpretation of scaling introduced in this reformulation.

Graded characters corresponding to graded representations in Definition can
be (formally) summed up to quite pretty formulas. It is important, that we are
able to find such closed forms, otherwise the calculations would be intractable.

Proposition 3.70 (Selected graded characters). Let V' be a finite-dimensional
or graded representation of a group GG. The following graded characters are
given by:

NN () Z "X ! = !
)| verl9) = 5 —tTr(gly) — 1—tx,(9)
1 1

(t: "X gn =
Xsq)(t:9) Z Xy (9) = det(1 —tgly) ~ dety (1 —tg)

X/\(v (t;9) Zt X/\n(v g) = det(1 + tgly) = dety (1 +tg)

Proof. We perform the proof only for a finite-dimensional V' with m = dim V.
Proof would follow along the same lines for a graded representation, only x,, itself
would be a series and V' would have possibly non-finite but still countable basis.

The first relation follows from Proposition applied to V®", thus
[e.9] oo 1
t"Xyren ( Xy ( =
2 e Z{ Vo =1 txy(9)
where the last equality is just performing the sum of a geometric series.

Fix any g and let {e;}!; be a basis of V' created from eigenvectors of g|y with
corresponding eigenvalues {\; }1 ;.

For any given n € Ny, it is easy to see that a basis of S™(V) is

71 T
{el en';n

Since we have (see Definition [3.59)

m
r; € NO,ZTZ- = n}

1=0

gler ---eyr) = At A (e - - ep),
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it follows that

i}tnxsn(\/)(g) = i "y A= i D)= ()"

n=0 [r|=n n=0 [r|=n r
m oo m 1 1

= (tA)" = = ,
grlz_;) 221_[1 1-— t)\z det(l — tg|v)

Ap

VA

where we used the multi-index notation A" = [] 7|

2 Tie
For any given n € Ny N [0,m], a basis of N(V) is

{ekl/\-n/\ekn|k:j€N0,O§k1<---<kn<m}.

Similarly, since we have
g<ek1 ARRRNA ek’n) = >‘k1 e )\kn<ek1 ARRRNA ekn)?

it follows that

Z tnX/\"(V) (g) = Z t Z }‘k - Z Z (t)‘>k
n=0 n=0 ki1<-<kn n=0k;<---<kn

=T +tx) =det(1+tgly). O

i=1

Remark 3.71. Summed up graded characters are reminiscent of partition functions
with corresponding statistics found in statistical mechanics, namely the grand-
canonical partition functions for Bose-Einstein/Fermi-Dirac ideal quantum gases

Z, = H[l F e_ﬁ(E"_“)r = H[l F ze_ﬁE”rF,

n

1

where n goes through all energy states with energies F,,, and as usual § = T

The fugacity z = e* plays the role of ¢, and e #F» plays the role of \;.

There is another way to express graded characters of S(V) and /\(V), mainly
useful in the case when V itself is a graded representation. It enables us to sidestep
the calculation of determinant just by knowledge of its graded character.

Corollary 3.72 (Graded characters as a Plethystic Exponential). Let V' be a
graded representation of a group G with a label q. Graded characters in
Proposition [3.70] can be also calculated as

o0 ) tT‘

Xson (@ 9) = eXP(Z (+1)'HTXV(QT;QT)> = PE|tx, (¢:9)],
r=1
o0 t’r‘

Xpw (t: @5.9) = exp (;(—Ur“rxv(qﬂgr)) = PE;|tx, (:9)]-
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Proof. First, we perform manipulations with an arbitrary matrix of the form
1 FtA, where we a use well-known formula det exp = exp Tr = det = exp Trn,
and expansion of In around 1, to obtain

[det(1 FtA)]T = [exp Trin(1 FtA)|T

— exp [:F Tr(i(—l)”lwﬂ — exp (i(il)”lt Tr(A’”))

r=1 r r=1

Since the action of g on V,, is given by ¢"g|y, (see Remark|3.69)), the result follows
from Proposition [3.70| and calculation

%) F 00
[dety(1 Ftg)]T = lH dety, (1 F tg)] = [][det(1 Ftq"g|v,)]" = [from before]
n=0 n=0
= H exp(Z (£1) ra1t Tr[(q glv,)" ) = exp<z Z (£1) r+1t Tr [q""q"|v, ])
r=1 n=0r=1
[o@) t'f’ oo o0 t"‘
= exp (Z(il)”l . Z( " Tr[g’”]vn]> = exp (Z(:I:l)r+1rxv(qr;gr)>,
r=1 n=0 r=1

or more simply using g" = (¢;9)" = (¢";¢") as

ene(1 )" = exp (1) oy (0] = o S0 D i) ) 0

r=1 r=1
Remark 3.73 (Plethystic Exponential). For a function «f(ti,...,t;) satisfying
a(0,...,0) =0, the (fermionic) Plethystic Exponential is defined by [12]

(e o]

PE/[a(ty, ... tx)] = exp (Z (—1)"+ ia(ﬂ, . ,t;)).

r=1

It is customary to leave out f in PE;, and just automatically include the factor
(—1)"*! for “fermionic” functions. Already working with this convention, for two
functions «, 5 (either one bosonic or fermionic) of some common variables, the
Plethystic Exponential satisfies the sum-to-product property

PE[a + 8] = PE[o] PE[A].

One simple example is a(t, q) =t and S(t, q) = ¢, both bosonic or both fermionic,
for which it generates all anti-symmetric combinations, that is

1 _ 2 2

thus reflecting the corresponding statistics.

3.6 Weyl integration formula

A particularly hard question is, how do we actually compute integrals appearing
in Corollary [3.50, Normally, we would need to have a parametrization of a
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compact Lie group G, construct the invariant Haar measure dg by (for example)
left-translating the volume form in the identity of G to the whole G, express
characters in a given parametrization, and perform the D-dimensional integral,
where D is dimension of G. More often than not, immediately the first part of
finding the parametrization can be extremely tough.

But there exists a remedy, which by utilizing the fact that characters are class
functions and a deep analysis of the structure of compact Lie groups enables us
to restrict the integration to a simple subgroup of GG, moreover preparing us just
right to use the powerful method of complex integration.

But first, we must expand our toolbox. Mostly we will just quickly recall some
elementary definitions, since one can find more details in any book on Lie groups.
Already in Proposition we found the isomorphism between left-invariant
vector fields and vectors at the identity of a Lie group. Furthermore, this enables
us to induce algebra structure on the tangent space at identity.

Definition 3.74 (Lie algebra). A Lie algebra g = T.G of a Lie group G is the
tangent vector space at the identity of GG, together with the algebra structure

la,b] = [€,, ]| for any a,b € g,

induced from the Lie bracket of left invariant vector fields on G.

Remark 3.75 (Jacobi identity). We automatically obtain the Jacobi identity
[a,[b,c]] + [c, |a,b]] + [b,[c,a]] =0, for any a,b,c € g,
since it holds for the Lie bracket of vector fields.

Remark 3.76. Consider the behaviour of group multiplication m: G x G — G
near identity. The corresponding pushforward at the point (e;e) is given by

My cgPbg—g, adb—a—+b.

(e5e)

This can be seen by considering curve 7¢: R — G with the tangent vector a at
the identity e = v,—o. We denote this by a = 2+,

. Then, specially choosing
combination a @ 0 <> (v%; e) we have

D D

_ — a., —_ a =
M (a, b 0) = My =0 dTm(’YT’ 6)‘7_:0 dTIYT —0 a.

D, .
%(77’76)

(e;e) (e;e)

The result follows from an analogous argument for b, linearity of pushforward
(general property of pushforwards), and finally takinga®b=a®0+0& b.

Intuitively, near identity the group multiplication of G is reflected in the linear
structure of vector addition in g. This is very useful for the study of Lie groups.

It is easy to go from G to g, we just have to look at the tangent vectors. After
understanding the “small” transformations of G near identity, it is also desirable
to go in the opposite way. There indeed exists the natural exponential map.
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Definition 3.77 (Exponential map). Let g be a Lie algebra of a Lie group G.
The exponential map is defined by

e* =exp(e): g— G, ar— ] =+%1),
where 7¢ : R — G is the integral curve of the left-invariant vector field £,
(corresponding to a by Proposition [3.16) going through the identity e = v2_,.

Since curves o — 77%(o) and o — y*(70) actually correspond to the same
vector Ta € g, they are equal, and we obtain
D

Ta(1) = ~% =~ — = pTa ]
Y1) = 4%(1) = 74 a=

]
Il

From the properties of integral curves we also obtain following

(t40)a __ ~a __ .a.a __ _Ta,oa 0a _ 0 _ Ta\—1 _ —7a
e =Y, = Vevy =€ et =" =e = (') =e %

)

Remark 3.78. It can be easily seen, that the differential (or pushforward) of the
exponential map at the origin 0 € g is the identity, thus by the inverse function
theorem it is locally invertible at 0 — e. For an illustration see Figure |3.5]

g

Figure 3.5: Illustration of the exponential map e® mapping from the Lie algebra g to the
corresponding Lie group G. Locally around 0 € g it is a diffeomorphism.

Similarly as groups, we can also represent Lie algebras on other vector spaces.

Definition 3.79 (Lie algebra representation). A representation of a Lie algebra g
on a finite-dimensional vector space V' is a homomorphism of Lie algebras
&: g — End(V), meaning it preserves the Lie algebra structure, that is

g[a,b] = [Emfb] = fa : fb - fb : ga for any a, b e g,

where the right side can be understood as the matrix commutator.

Remark 3.80. Note, that End(V) is a Lie algebra of GL(V).
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In the following definition we introduce the notion of inner automorphism or
conjugation, and the related Adjoint and adjoint representations. A great deal of
information about a Lie group can be extracted by study of their structure.

Definition 3.81 (Conjugation, Adjoint and adjoint representations). Let G be
a Lie group. For any element g € G we have a conjugation automorphism
AD,: G — G given by AD, = LyR,-1, that is for any h € G we have

AD,h = ghg™', also AD,AD), = AD,y,.
In the following let v,: R — G be a curve with the tangent vector a at the
identity e = 7,—¢. For example we can take v, = e™®.

Corresponding induced map on the vectors at the identity gives rise to the
Adjoint representation Ad,: G — GL(g) of G on g, that is Ad, = AD,,|..
Equivalently, using the previously defined curve we have

D
Adya = EADg’yT

7=0

Once more, the Adjoint representation induces the adjoint representation
ade: g — End(g) of g on g by ade = Ad,./., that is for any b € g we have

)
=0

d
adgb = %Ad%b

where we write “normal” derivative, because if V' is a finite-dimensional vector
space, then T,V is canonically isomorphic to V' for any p € V.

Remark 3.82 (Adjoint representation Ad, is orthogonal). From construction g is a
real vector space. Hence, the Adjoint map Ad, is a real representation. Indeed,
induced maps are in general linear, and Ad, is invertible with inverse Ad,-1, since

AdyAdy1 = AD,,AD,1, = AD,.

e

=1

€

e = (AD!]ADQ_I )*

= (ADgg‘l)*

e

Y

and also satisfies property Ad,Ad;, = Adgy,, because AD;AD), = ADy,.

Additionally, we can construct a real scalar product on g that is Ad-invariant, by
similar arguments as in Theorem [3.39, We just take any inner product (e, e) on g
and average it over G using invariant Haar measure dg as

(o,0) = /(Adgo,Adgo> dg = (Adye,Adye) = (e,e) forany h € G.
G

Thus, the Adjoint representation Ad, is orthogonal (see Remark [3.12]).

Remark 3.83. One can show that the action of adjoint representation is actually
given by the Lie bracket, that is ad,b = |a, b]. Hence, we can rewrite the Jacobi
identity in Remark as adjgp = [adg,ady] = ad, - ady — ady - ad,, which
confirms that ad, is really a representation in the sense of Definition [3.79
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We also have very useful formulas relating the exponential and adjoint maps. They
can be recognized as common identities valid for matrices in linear algebra, but
they also hold generally in the abstract setting of Lie groups and algebras.

Proposition 3.84 (Formulas for ¢*, AD,, Ad., and ad,). Let g be a Lie algebra
of a Lie group G. Then for any a € g and g € G we have

ADge® = A9 and  Adea = ™o,

where ¢*de is understood as a matrix exponential of ad, € End(g).

Proof. It is enough to check the following properties of exponential

ADge(TJrU)a — ADg(efaeau,) — gefa'(jfl’(]eoagfl — (ADgeTa)<ADg€Ua),

a D T4 D T4
ADgeO = ADge0 = ADge = e, %ADge ., = Adg%e L = Adya.
Similarly, for the second identity we calculate
Ade(7—+o)a = Aderaeaa == AdeTaAdeaa,
D
Adgae = Adpo = Ad. =1, —Adera =ad, = ady,. [
dT 7=0 e

7=0

In Example [3.8 we presented a simple example of a Lie group, namely a torus T".
Its simplicity stems from the commutative multiplication of complex numbers.
Since any neighborhood of identity already generates a compact connected Lie
group, this implies that exponential map is surjective on torus [8].

Perhaps surprisingly, we will be always able to restrict the integration of class
functions on a compact connected Lie group to its mazimal torus.

Definition 3.85 (Maximal torus, rank, Cartan subalgebra). Let G be a compact
connected Lie group with the Lie algebra g. Then we define:

(1) A subgroup T C G is a mazimal torus of G if it is a torus in the
sense of Example [3.8 and there is no other torus 7" with T C T' C G.
Equivalently, T is a maximal connected abelian subgroup of G, that is

gh =hg forany g,heT.

The dimension of the maximal torus 7" in G is called the rank of G.

(2) A subalgebra t C g is a Cartan subalgebra of g if it is a Lie algebra of
some maximal torus 7" of G, see (1). Equivalently, t is a maximal abelian
subalgebra of g, that is

l[a,b] =0, foranya,bct.

Remark 3.86. Various alternative definitions must be proved to be equivalent. An
interested reader can find the proofs for example in [8, [10]. They fundamentally
exploit properties of the exponential map (see Definition and Proposition |3.84]).
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Example 3.87 (Maximal torus of SO(d)). The maximal torus of SO(d) is

Tso) = SO(2) x -+ x SO(2) = (S')".

r

where r = [d/2] is the rank of SO(d) = SO(2r + 1). The torus Tso) can be

parametrized in the standard representation J = CY = C?>*+! as

cosf; —sinbd,
sin 6, cos 0y
9]‘ € [0, 271')
cosf, —sinb, j€el..r
sin 6, cos b,

Alternatively, we can parametrize by r complex variables on the unit circle, namely
by = (11,...,2,) = (¥, ..., "),

Definition 3.88 (Weyl group). Let 7' be a maximal torus of a compact con-
nected Lie group G, and N be the normalizer of T in G, that is

N:{gEG’ng’lzT}.

Then the quotient group 20 = N/T is called the Weyl group of G.

Remark 3.89. It can be shown that the Weyl group 20 is always finite. Intuitively,
it is a group that permutes the factors in the torus.

We are now ready to state one of the main theorems of this section. It is
generalization of a well-known fact, that any SO(d) matrix can be conjugated by
a change of basis to the corresponding torus.

Theorem 3.90 (Maximal torus theorem). Let T be a maximal torus of a
connected compact Lie group GG. Then every element g € G is conjugate to
an element of T', that is

Jhe G, teT: g=ADyt = hth™ '

Moreover, a general element of G is conjugate to |20| such elements of 7T'.

Remark 3.91. One of the approaches (see [§]) to proving this important theorem
studies the map ¥ defined in the “proof” of Theorem [3.97]

Example 3.92 (Character of the standard reprentation [J of SO(d)). Since characters
are class functions, and by Theorem every element can be conjugated to the
maximal torus, to evaluate y(g) it is enough to specify any corresponding torus
element t <+ g. Using parametrization introduced in Example we obtain
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r

d 1
2> cos(b;) = Z(wz + ) for d = 2r,
i=1 i=1 i

Xp(® < g) =

r r 1
142 cos(f;) = 1+Z<xi—|—) for d = 2r + 1,
i=1 i=1 Li

where [J = C9 is the standard representation of SO(d).

Example 3.93 (Graded character of S(OJ) for SO(d)). Similarly as in previous
example, using Proposition [3.70, Example [3.87], and realizing that eigenvalues of
the torus element t <> x are exactly given by {1, x;,1/x;}!_;, we obtain

r 1
ford =2
i:Hl(l—ta:i)(l—t/xi) o -
P(t;x <> g) = XS(D)(t;:v “g) = | )
for d = 2r + 1.
1—ti:1_[1(1—txi)(1—t/xi) or r

We denoted P = s@)’ since it will later turn out to be the “projection” factor.

Maximal torus theorem shows the significance of the conjugation map AD,.
Naturally, it is easier to study its “linearized” version, the Adjoint representation
Ad,. If we consider only operators on g corresponding to the torus elements,
that is {Ad, | t € T}, and recalling that Ad, is orthogonal (see Remark [3.82), we
obtain a commuting set of normal operators. Therefore, it will be possible to
perform simultaneous diagonalization, but first we must complezify g.

Definition 3.94 (Complexification of Lie algebra). Let g be the Lie algebra of a
Lie group G. The complezification of g is defined by g = g ® C, where the
algebra structure [e, o] of g is extended on g by C-linearity. Similarly, we
extend representations (Ad, g) and (ad, g) to gc by C-linearity.

Definition 3.95 (Roots of Lie algebra). Let g be the Lie algebra of a compact
Lie group G of rank r, T" be a maximal torus of GG, and t be the corresponding
Cartan subalgebra of g. There is a set of nonzero elements R(G) C t§, called
the roots of g¢, such that we obtain decomposition

ge=tcd P 9.,
aeR(G)

where g, is nonzero space called the root space corresponding to o defined by

g, =1{a € gc | adna = [m,a] = a(m)a for m c t}
= {a € gc ’ Adia = Adma = e*™q fort =e™ € T},

where we used Proposition [3.84] Choosing an orthonormal basis for t and
representing a <> @ = (aq,...,q) and t <> = (21, ...,2,) = (€™, ... ™)
in the spirit of Example [3.87], we also obtain
M) = 21 i = [I(e™) =[] = = =
i=1

=1
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Remark 3.96. We will use the standard fact that R(G) is symmetric about the
origin, that is if @ € R(G) is a root, then —a € R(G) is a root as well. Since
roots are nonzero, there is always an even number of roots.

Finally, we are prepared to state and partially prove the main theorem of this
section — the Weyl integration formula. Together with the maximal torus theorem
they open the gates to the deeper representation theory of compact Lie groups.

Theorem 3.97 (Weyl integration formula). Let f be a class function on a
connected compact Lie group G of rank r, T" be a maximal torus of G
parametrized by = (z1,...,x,), and 20 be the corresponding Weyl group.
Then we have

oo el mo-]li)

|zi|=1

Remark 3.98. We use the same notation f for a class function on G, for its
restriction to T', and also for its coordinate expression.

Sketch of the proof. The idea is to restrict the integral of f over the whole G
only to the suitable integral over T'. Consider the map

U: G/TXxT— G, (gT;t) = Yyp(y) = U (gT;t) = gtg "

From Theorem we know, that ¥ is a finite-sheeted covering of G with |20
sheets, where 20 is the Weyl group of G. Hence, it follows that

1
/fdgz/fwcz/ fuwo = —— U (fwo).
G G Y (G/TXT) |QB| G/TxT

Since f is a class function, from definition of ¥ we have

(U F)lgrey = f oW (9T, t) = flgtg™") = f(t),
thus only thing left to calculate is V*wq.

To avoid dealing with many technicalities, we assume there exist left invariant
normalized volume forms w¢/r on G/T and wp on T In the following denote by
71 and 7y the natural projection maps from G/T x T to G/T and T, respectively.
We obtain a left-invariant volume form on G/T x T as

wG/TxT = (wag/T) A (W;QJT).
We want to find the factor © relating the volume forms V*w¢ and wg/rxr, that

is for any (¢7;t) € G/T x T

(\Ij*wG>’(gT;t) =D(gT;1) [(WTWG/T) A (WSwT)} ‘(gT;t)'

Using the left-invariance of w, we can translate the calculation to the identity by

(V'wa)| =0 (welgg1) = U L1 1wl
(eT;e>>'

(gT;t)

= Lig-14-1) <@(gT; t) [(WTWG/T) A (W;wT)}
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Multiplying from left by Lf, 1) We obtain

(Lgt—lg—l oWo L(g;t)) wele =D (gT'; 1) [(WrwG/T) A (W;wT)} ’(eT;e)’

so after identifying g with 8/t @ t we have ©(¢T';t) = det (Lgrlgq oV¥o L(g;t))*.

Taking any vector at identity (a © b) € 8/t & t = g with the corresponding curves
Te: R — G/T and yo: R — T, that is x,—¢g = €T, y,—0 = €, and

D D
a = EQZ‘T . and b= %yT =0’
we can calculate
D
(Lgtqgﬂ oWo L(g;t)) (a S5, b) dr Lgt 1,-10Wo L(g;t) (.’L‘T; yT) 0
: D
just apply Ly = =—Lg-14-1 0 V(gz,;ty;)
o dT =0
_ ., _D 1
apply U(gT;t) = gtg =3 —Lgi-14-1(92-) (ty;) (gz,)~
T =0
only o el oot D 1
apply Lg-1,-1 and cancel gg = —gt x ty. x. g
’ ’ dT =0
e AD,h = ghg™' = DAD AD -1
use AD,h = ghg = g( —1(z) Y., ) L
D -1
use Ad, = AD,,| = Ad, 9 —ADy-1 () y, @
¢ =0

use Remark = Ad,(Adi-1a+b—a)

Adyily, — 14,10,
matrix notation = Ady ( i 7’}{ _ - 0 ) (a;b)

Recalling Remark for connected G actually leads to the conclusion that Ad,
is special orthogonal, thus det Ad, = 1. Overall, we obtain

Ad — 14,0,
D(gT;t) = de t( Aditly — oy 3 Oy ) — det gy (Adyr — 1),

Since ® does not depend on g7, we can write D(t) = D(eT’;t) and calculate

1
——

/ [ (we) :/ JDwerxr = / /o (/ w(;/'/‘>w:r’-
G/TxT G/TxT G/T

Proof is thus concluded by utilizing Definition |3.95 and Remark to calculate

D(t) = detg/t(Adt_1 -1)= H (;ija — 1) = H (1 —x),

acR(G) acR(G)

because the invariant integration over the torus 7T is given by

/ wT_// f d6 _ # ()1;[12‘72 :

|zs|=1
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Every class function is invariant with respect to the Weyl group 20, thus we also
have the simplified form (for derivation see [1, Appendix B])

/Gf(g) dg :Izﬂl f(=) Lg@(l - wa)] [H Qifxl

(@)
where R (G) is the set of so-called positive roots.

Example 3.99. Specifically, for G = SO(d) we have explicit forms [1]

I (=)l —xi/zy) for d = 2r,
n 1<i<j<r
QSO(d)(m) =93.r
[Ma-=z) ] Q—aiz;)(l —a;/z;) ford=2r+1.

i=1 1<i<j<r
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4. The Master Formula

In this chapter we will derive the formula for the Hilbert series by utilizing
everything we learned about the deep representation theory of compact Lie groups.
At first, we will work in the special setting of a single real scalar (bosonic) field,
where the arguments are more transparent and thus easier to follow. Afterwards,
we will outline the generalization of the formalism to arbitrary field content.

4.1 Strategy for scalar field

The main strategy for a scalar field ® follows as:

(1) Construct the Single Particle Graded Representation Ry (SPGR) containing
all possible operators consisting of only one ® and any number of derivatives
(of type 0"®), excluding ones that are trivially zero by use of EOM.

— addressing EOM relations

(2) Combine multiple Rg (consistently with the statistics of @) to create the Multi-
Particle Graded Representation Jp (MPGR) capturing the highly redundant
set of all possible non-trivial operators (of type 0"®").

— representation theory inherently
addresses GDC relations

(3) Project out the multiplicities of independent Lorentz and gauge invariant
operators from Jg by use of character orthogonality and formulas for graded
characters, thus obtaining the Hilbert series for the operator basis B, already
viewed as a graded dimension of K = Span B.

— picking out only scalar operators
and addressing IBP relations

This can be summarized in the diagram

. 1 )
) @Zo:o Drore . @zo @"S" (e) . ./SO(d) P(Dig) Xe (¢,Dsg9)dg
" and EOM o since ® is a boson Ca

H0<¢7 D)a

where Hy(¢, D) is the “main” part (to be defined) of the full Hilbert series H (¢, D),
and the factor 1/P(D; g) accounts for the IBP relations.

We will treat steps (1) and (2) in Section [4.2] afterwards in Section we
will derive the factor 1/P(D;g) appearing in the step (3), and we will finalize
the derivation for the scalar field in Section [4.4] with pretty straightforward
generalization in Section [4.5

and Weyl integration formula

4.2 Equations of motion redundancy
We would like to build R¢ by repeatedly applying derivatives on ®, but we also

need to continuously utilize all possible relations to avoid any redundancies. At
this point only EOM relations can play a role, so we need to identify them.
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The kinetic Lagrangian density of a single scalar field ® has the form
Lyin(P,0,P) = —;aa(b@“q) in signature(—, +, +,...),
which leads to the free equation of motion (known as the wave equation)
0P = 90 = 90, = 0.

Applying one derivative, we obtain 0,®, which will be our prototype of an object
transforming under the standard representation (J = C9 of SO(d). Alternatively we
could work with 9°®, however for SO(d) this leads to an equivalent representation,
since we have invariant metric tensor d,, enabling us to lower indices.

When we apply multiple derivatives we obtain symmetric representations S™(0J),
since partial derivatives automatically commute. But additionally, we must not
forget to apply EOM, thus we need to discard all trace parts of any operator.
Since for fully symmetric tensor (representation) there is only one independent
contraction, this motivates us to define following representations.

Definition 4.1 (Traceless symmetric representations of SO(d)). Let V' be a
representation of SO(d), and (e, ) be a corresponding positive-definite
bilinear form (see Remark [3.12). We have a natural contraction for n > 2

C: S™(V) — S"2(V),

'Ul""Un'_>ZQ('Uz‘yvj)vl"'61""6]""'071,
0.

which can easily be checked to be a G-map using the G-invariance of ()(e,e).
Thus, Ker(C) is subrepresentation of S"(V'), and it gives us a decomposition
s*(V)
Ker(C)

S™(V) = Ker(C) ® >~ Ker(C) & Im(C) = S (V) @ S"2(V),

since C' is obviously surjective.
Consequently, we have (by definition S{% (V) = C and S{H(V) = V)
sM (V) =8MV)ye sth2 (V) e @ st (Y),

where p = {%J We call representations S{™ (V) as traceless symmetric.

Remark 4.2. Similar construction can be made for the tensor power V" only
there we have more contractions, so decomposing it leads to the traceless part
and multiple copies of V&2,

Remark 4.3. Suppose we have a representation W and assume there exists some
G-invariant contraction C' on W. Then if W wants to be irreducible, it necessarily
must be traceless, otherwise Ker(C') would be its nonzero proper subrepresentation
(nonzero since it maps to a lower-dimensional space).
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Remark 4.4. Representations S{"}(0) for the standard representation [0 = C? of
SO(d) already turn out to be irreducible [9)].

We can create traceless symmetric graded representation S (V) similarly as S(V).
It is in our interest to calculate the corresponding graded character.

Proposition 4.5 (Graded character of traceless symmetric graded representation).
Let V' be a representation of a compact Lie group G. We define the traceless
symmetric graded representation S1* (V) of V by

SV = @ sy,
n=0
Corresponding graded character x g, W) (t;g) is given by

Xstor 1) (59) = 20 "X gim 1y (9) = (1= )50 (.9) = dety (1 — tg)’
n=0

Proof. Using Definition [4.1] we obtain for n > 2.

4

SMV) =S (V)@ SV Xy (9) = Xgom 17y (9) + Xgnz(3)(9)-

For convenience we extend the definition of y Sn(v) for negative n by zero. We can
now simply express SV (g9) and calculate

Z tnXS{n}(V)(g) = z_:otn [Xgn(v)(g) - XS"*(V) (gﬂ

n=0

= (1-1?) z_%t"xsn(v) (9) = (1= *)xg0(t:9),

thus the proof is finished by Proposition [3.70} O

Derivation 4.6 (Single Particle Graded Representation Rg for a single scalar field ).
All operators composed of one ® modulo EOM are therefore contained in

P
0, D
8{a1 aCLQ}(I) ©
Ro=Span| . |=@Dst@)=stO)
. n=0
8{(11 Ce aan}(I)

where ...} denotes the traceless symmetric part and U = C9 denotes the standard
representation of SO(d). We suggestively changed the grading labels ¢ — D.

Derivation 4.7 (Multi-Particle Graded Representation Jg for a single scalar field ).
Since @ is a boson, corresponding operators must obey the permutation symmetry.
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We can obtain all operators modulo EOM in the symmetric powers of Rg, thus

Jo = éWS“(R@) = S(Rp) = S(S{°}(D)).

Corresponding graded character can be calculated using Corollary and
Proposition as (where we used notation P(D;g) from Example [3.93))

X, (6:D:9) = Xy, (6, D:9) = PE[d xp (D3 9)] = PE[¢(1 — D*)P(D; g)].

Remark 4.8 (Gram determinant conditions). We are building Js in a certain
sense constructively. Since the representation theory intimately understands that
representations /\n(D) for n > d are trivially zero, operators which generate GDC
relations (see Section are automatically discarded during the process.

Remark 4.9. Alternatively, we can view Jg as a graded differential polynomial
quotient ring with the ideal generated from the equations of motion

To = C[@%3a1/<<9%¢>
= C[®,04®, 010,00y P, -, e+ 0y @, |

4.3 Integration by parts redundancy

This section will be already applicable in general, but we can always imagine we
are working with a scalar field .

Suppose we have constructed the redundant representation J of all possible
operators modulo EOM, together with its graded character. Our goal is to find
the Hilbert series, which is the graded dimension of L = Span B C J. We need to
deal with IBP relations and also pick out only scalar (Lorentz and gauge invariant)
operators. This will be addressed by a cohomology-type calculation.

We would like to proceed similarly as in part (3) of Example , where we
realized that any non-trivial operator generates exactly one IBP relation between
operators containing one more derivative. Likewise for d > 2, operators with
one free index can generate IBP relations, but only those that are not trivially
zero after applying the divergence. Prime example of operators which do not
contribute to the IBP relations are operators of the form

0"Oq, where Oy = Oty = 99°0,, = a<b8“>o[ab] =0,

that is so called co-exact 1-forms. Thus, we are naturally led to the following
elementary concepts from homology /cohomology /Hodge theory.

Definition 4.10 (Co-closed and co-exact forms). Let Sect A*M be the space of
k-forms on the space-time manifold M. We define the following notation for
a form w € Sect A*M (thus o € Sect A¥+1 M)

. def
w is co-closed &= 0 -w=0,

. def
w is co-exact <— do:w=0- 0.
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Remark 4.11. For forms we automatically have 9-0-e = 0 by symmetry of partial
derivatives and asymmetry of forms, thus every co-exact form is also co-closed.

In our case we work with the Euclidean space-time manifold M = RY and the
Lorentz group SO(d), so the k-forms transform under the representation /\k(D),
where [0 = C¢ is the standard representation of SO(d).

We would like to identify how many forms of a given degree are contained in 7,
and use this information to count the operators in . This motivates us to study
SO(d)-linear maps between /\k (O) and J, because images of such non-trivial
maps identify subrepresentations of 7 with the similar or same transformation
properties as have k-forms.

Definition 4.12 (k-form graded representation). Let J be a multi-particle
graded representation of the group SO(d). The k-form graded representation
of J is defined by

Jik) = Homso(q) (/\k O),J )

We say that O € J is a k-form operator (we denote it by Opy) if O is in the
image of some map from Jj). Furthermore, by straightforward extension of
Definition to Jjx we can define its subspaces, for example

\7[k]co—closed = HomSO(d) (N(D), {O eJ | 0-0 = 0}),

k / /
t.7[k]co—exact = HomSO(d) (/\ (D)7 {O eJ ‘ 3 O[k+l] :0=20- O[kJrl}}) :

To show this definition is indeed sensible, we need to make several comments
about the exterior representations of SO(d).

Remark 4.13. On any pseudo-Riemannian space, but we will specially take R¢,
we have the Hodge star operator *: AFRY — AY~*RY defined in components by

* _ ar-ag
Wayomay > (¥W)aygag = [iied €ay-apapi1--ags

where € is so-called Levi-Civita tensor.

Since € is invariant with respect to SO(d) transformations, after C-linear extension
of Hodge star * to [0 = C we get an isomorphism

NO=ATO = Ty Tun

This just reflects representation theory “understands” that any k-form can be
transformed by contraction with € to (d — k)-form, or vice versa.

Remark 4.14. It is a standard result, that representations /\k (O) are irreducible

for k < d/2 [8, 9] (thus also for k > d/2, see Remark [4.13)). This is very important,
because for such k£ we can use Corollary [3.50, or maybe even better Remark |3.68|.
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But then there is the case k = d/2 for even d, which needs more justification.
Hodge star operator satisfies the identity

%0 % = (—1)’“(‘1*’“)1

Y

so for d = 2m we obtain the automorphism of kth exterior representation of []

m

T=(—)": N (O)— N (D), ToT=1,

giving us the canonical decomposition to self-dual and anti self-dual representations

N'©O) =N (Oe N ©O),

which are eigenspaces of 7 corresponding to the eigenvalues 1 and —1, respectively.
These already turn out to be irreducible (and mutually inequivalent), therefore

dim Homso() (A"(0), A'(0)) = g dim Homso() (A"(0), A} (0)) =1+1=2.

This is exactly what we want, because each of the 2 independent m = d/2 form
representations plays their own role in the following derivation.

Derivation 4.15 (Adressing IBP relations by cohomology, splitting H = Hy + AH).
Since IBP relations tell us that total divergence terms are equivalent to zero, the
representation L = Span(B) is composed of all O-forms contained in J that are
not co-exact. In other words, the Hilbert series is given by the graded multiplicities
of trivial representations in J that are not co-exact, that is

H(¢, D) = dlm(q&,D) K = dlm(¢,D) t.7[0}not co-exact-

For the sake of brevity, we will write just dim e instead of dim(4 pye. Since to
every non-trivial co-exact k-form corresponds exactly one (k4 1)-form that is not
co-closed (see Definition , by keeping track of the right grading we obtain

dim Jjojmot co-exact
dim K = dim Jjo) —  dim Jjojco-exact
= dim Jjo = D dim J[1not co-closed
= dim Jp) — D(dim Jny — dim x7[1]c0-closed)

= dlm \7[0} - D<d1m ‘7[1] - dlm x7[1]co-exact - dlm u7[1] co-closed >
—_— ————

not co-exact

. Ddim
iteratively : J[?]not co-closed

d

not co-exact

k

d
0(—D)k dlmtﬂk]+;(—1)k+12}k dlm‘.7[k] co-closed

Hyp AH

where we also used splitting of co-closed forms to the co-exact ones and to the rest
(see Remark [4.11)). Iteration terminates because there are no k-forms with k£ > d.

Hence, we found that the Hilbert series naturally splits into two pieces, where
we will intuitively infer in Remark that AH is a small correction to the
“main” part Hy. Since Hj usually contains almost the whole information of H, we
sometimes refer to it also as the Hilbert series. We will obtain an exact formula
for Hy, but calculation of AH must be done “by hand”.
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Remark 4.16 (Contributions to AH). One such co-closed but not co-exact form is
the Levi-Civita tensor €,.., = %1 (where * denotes the Hodge dual). This follows
because it is constant, thus co-closed, and also a top-form, so there is no form
of higher degree. We therefore always have a contribution of —(—D)¢ to AH,
because we over-count &,..., in the Hy part.

In the case of a single scalar field ®, the one-form 0,® also falls down to that
category. Co-closedness results from EOM, as 0 - 0® = 9°0,® = 0, and it is
obvious that it is not co-exact. Since it contains one derivative, and we need
another one to bring it down to a 0-form, we obtain a contribution of ¢D? to AH.

One could try to find other examples in .7[k] coclosed , but in the case of a scalar
not co-exact

field there are none. That such terms are pretty rare sounds plausible. If the
divergence of a form is not automatically zero by its components’ symmetry, only
other possibilities are that it is either constant (only &,..,) or it vanishes by EOM.
This typically leads to only couple of instances, since the divergence of a form
containing couple of particle fields is unlikely to be identically zero (for example
0(0,9P) = 02, 9P + 9,290°® # 0), and if we have to use only one particle field,
there are not many forms because 940, = 0.

We conclude that for a single scalar field we have
AH(6,D) = (~1)™1D* 4 D2,

which agrees with an explicit formula for AH derived by Henning, Lu, Melia, and
Murayama [1], which is valid only in some special cases when SPGR corresponds
to a conformal representation (in particular for a scalar field).

4.4 Integral formula for the Hilbert series

In this section we finalize the derivation of formula for the Hilbert series, namely
for the “main” part Hy. We essentially have done the hard work in Section [4.3]
now we just (in the same spirit as in Corollary express the graded dimension
occurring in Hj through integration of the graded characters.

Derivation 4.17 (Projection factor 1/P(D; g) addressing IBP relations). First, we
can perform following manipulations (just to obtain nice alternative expression)

d d

Ho(d), D) = Z(—D)k dim(d,,p) \7[k:} = Z(—D)k dim(d,p) Homso(d) (/\k([]), j)
k=0 k=0
d

= dim(g,p) Homso(a) (@(—D)k/\k(m% J ) = dim(g,p) Homsoga) (A (0)..7).

k=0

where /\_(D) is the exterior graded representation of [, but with alternating signs
in the grading. Using Proposition we can calculate its graded character as

X/\—(D)<D§g) = nz:%(_p) X/\"(D)(g) = detn(1 — Dg) = s(D)(D; g)  P(D;g)
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Derivation 4.18 (Master Formula for Hy). Since Derivation was not specific
to a single scalar field, we quite generally obtain the Master Formula for Hy as

HO(¢7 D) = dim(qﬁ,D) HomSO(d) (/\_ (D)a \7) = Lo(d) X/\i(lj) (Da g_l)Xj(d)) Da g) dg

X (¢, D;g)dg,

1
= det(1 — DgT , D; dz/
LO(d)MXJ(d) 9)dg sow) P(D;9)
det(1—Dg)

where we used equality (2) of Corollary extended to the case of graded
representations, together with relation g=! = ¢7 valid for SO(d) (see Example .
Integration can be further simplified by restricting it to the torus 7" of SO(d)
(using the Weyl integration formula discussed in Section .

For the special case of a single scalar field we therefore obtain

o) = [

— D? : _ 1\d+1pd 9
50(d) P(D;Q)PEW1 D*)P(D; g)| dg+ (—1)*"'D — ¢D”.

AH(¢,D)

HO(¢7D)

We will continue the calculation in Section [5.11

4.5 Generalization to arbitrary field content

We are almost ready to generalize the derivation to the arbitrary field content.
To say almost is actually a big overstatement, since there are numerous places
where it is necessary to use sophisticated tools far beyond the scope of this thesis.
Nonetheless, the big picture can be understood very well after the worked out
case of a single scalar field.

Our starting data for any EFT are:

e Particle fields {®;} together with specification of their representations under
the Lorentz group SO(d) and a possible internal group G composed of gauge
groups and other (for example global) symmetry groups. We always assume
particle fields transform linearly under G.

e EOMs generated from the kinetic Lagrangian density Lyi,.

e Other constraints, example being Bianchi identities for Maxwell tensor

301 Fr = daFhe = 0.

We follow the strategy in Section with slight modifications, see diagram below.
Additional internal group G is accounted simply by assigning to every operator
its corresponding character with respect to G. Their only role will be played out
at the end, where we just project out the scalar operators by integration over G.

2 (& sw-i))

oo ; d)vr "(o:) .

{@ } @n:O Drote {R } ! <T:O /\ (‘./) fSO(d)XG P('I17:,g) X.(d),D,g)dQ H (¢ D)
R . ' '
v and EOM Pi ®; is a fboson and Weyl integration formula OV

‘ermion
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Remark 4.19. Now that we work with the direct product of groups SO(d) x G
(see Definition [3.7), we will understand group elements as g = (gso(d): 9¢)- In the
following we will just write dependence on g, but it is easy to recognize that some
parts of expressions depend only on gso(q), others only on gg.

Remark 4.20 (Fermions). We need to proceed more carefully with particle fields
that are fermions (spinors), since objects transforming spinorially must be inte-
grated over the covering group Spin(d) of SO(d). This leads to some technicalities,
so we will focus mainly on bosons. We refer interested reader to |1, |13].

Derivation 4.21 (Single Particle Graded Representations { R, } for general fields).
Once again, we start by building the single particle graded representations { Re, }.
In the case of a scalar field it was useful to decompose representations obtained just
by applying derivatives to smaller pieces, since some of them were trivially zero by
use of EOM. Decomposition to irreducible representations under the action of SO(d)
is effective in general, because any constraint (EOM or other) always discards
one or several whole irreducible representations. More complicated example of
electromagnetic field (photons) will be showed in Section [5.3]

If we successfully apply all EOM and other relations, we will be left with {Rgs, },
which decompose to the space-time SO(d) part and the internal G part as

Re, = Rso(d),e; ® Rg.e;-

The corresponding graded characters are then
Xg, (Dig) = X Rooe)0, 2R (D;g) = X Reoey 0, (D;9)X¢.0,(9);

where X, , is just character of the internal group G representation of the particle
field ®,, since all operators in Ry, contain only one ;.

Remark 4.22 (Young diagrams). Tensor powers [J*" of the standard representation
of SO(d) are typically decomposed by usage of so-called Young symmetrizers [11].
The idea it to exploit mutually commuting actions of SO(d) and the symmetric
group &,, (group of permutations on n symbols), which acts by permuting the
indices of the tensor. We can thus decompose [J®" to subrepresentations already
irreducible under &,,, particular examples already showed in Definition [3.55] where
S™(0) corresponds to the trivial representation, and /\n(lj) corresponds to the
sign representation. Other irreducible representations have “mixed” symmetries.
Any irreducible representation of &,, is uniquely described by a Young diagram
with n boxes, that will be intuitively used in Section

Derivation 4.23 (Multi-Particle Graded Representation J for general fields).
For ®; boson/fermion, we obtain all operators containing only this particle field
in symmetric/exterior powers of Rg, thus Jp, is

S(Es,)

= T T ST(R%) = .
jcbi — T@)gbl N </’1’:|>/) /\(H‘"/>'

The full Multi-Particle Graded Representation J containing all possible operators
(modulo EOM and other relations) is obtained just by taking the tensor product

T=®% -Q )
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The corresponding graded character is given by Corollary as

X;(¢.Di9) =[xy, (¢, D;g) = ]I PE

6iX,, (Dig)| = PE [Z O, (D g)] ,

with the proper statistics understood in PE (see Remark [3.73]).

Derivation 4.24 (General Master Formula for the Hilbert series). Finally, by the
same arguments as in Section 4.3} only with additional integration over the internal
group G, we state the Master Formula

1
H ,D:/ S ,D;g)dg+AH(¢, D),
(¢,D) SO(d)XGP(D;g)XJ<¢ g9)dyg (¢,D)
Ho(¢,D)

where AH corrects for miscalculations in Hy caused by existence of co-closed but
not co-exact forms in J, namely

AH(Q’), D) = k+1pk dim(¢,D) \7[16} cto-closed .
k not co-exac

> (=)
N

. k
k+1Dk dlm(d,,D) Homso(d)xg (/\ (D), jco—closed ) .

not co-exact

In the next chapter we will apply the formalism to some simple examples. Hopefully,
they will suffice to unveil the main techniques and solve some ambiguities of our
exposition up to this point. Of course, there is much more to learn, and we will
try to refer the interested reader to the relevant sources.
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5. Applications of the Formalism

We are now fully ready to employ the formalism developed in preceding chapters.
We will not be able to obtain the full Hilbert series, but by expanding the Plethystic
Exponentials we will focus on parts with a fixed field content (see Remark [2.13)).

In general, the final integrals we will obtain are just, to put it simply, gigantic.
Nevertheless, the results can be obtained by “just” calculating a finite number of
residues, since the integrands are rational functions. This can be automatized by
use of computer algebra systems, such as Mathematica. Since it is not possible
to show all the details of following computations, we encourage the reader to go
trough the accompanying Mathematica notebook [14].

First, we will finish the calculation for a single scalar field. Analysis of the results
will give us numerous enlightening inputs on the structure of the operator basis.
We will give a brief discussion regarding the dependence of the Hilbert series
on the dimension of the space-time d. After that, we will show on a little more
complicated example of electromagnetic field (photons) how to proceed, if the
building block of the Lagrangian has non-trivial transformation properties.

5.1 Single scalar field

For concreteness, we will write out equations only for d = 4. Picking up where
we left off the case of a single scalar field in Section [4.4] the usage of the Weyl
integration formula for SO(4) (see Theorem and Example [3.99) leads to

X e (¢,Ds9)

1 9 .
H6.0) = [ oy PRI PP )] dy

= # (1 =Dz1)(1 —D/x1)(1 — Dxs)(1 — D/xs) X

¢(1—D?)

lz1]=1

|z2|=1 x PE

X

dl’l dl‘g

” (1 B $1x2)(1 B $1/$2) 2’/TZ'$1 27Ti1’2,

where we have |D| < 1 (see Definition 2.9), @ = (1, 25) parametrizes the torus T
of SO(4), and we used Example to obtain
1

P(D;z) (1~ Day)(1 — D/ar)(L — Daa)(1 — D/az)’

(D;x) =

= Xsmo)

Calculation 5.1 (Fixed field content ®", r < 3). It is straightforward exercise to
show that the only non-trivial operators with the field content ", r = 1,2, 3, are
exactly @1, &2 and ®3 (we use bold numbers only for visibility). This indeed
checks out with calculation through the Hilbert series formalism for any given d,
see the accompanying Mathematica notebook. We must not forget the term

AH($,D) = (=1)¢1D? + ¢D?

for » = 1, otherwise it does not contribute.
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Calculation 5.2 (Fixed field content ®*). The simplest non-trivial case are operators
with 7 = 4 fields ®. Just by expanding the Plethystic Exponential defined in
Remark we get (t stands for any set of parameters, and the notation |s—4
means the coefficient in front of ¢*)

PE[OS(2)],, = 57 (F0)* + 657 (#) + 31 (82 + 8()/(#) + 6(£"))

where in the place of f(t) we substitute (1 — D?)P(D;x). For example, the term
f(t*) corresponds to (t* means we take the 4th power of every argument)

(1 - D¥)artar)
(1 - Diad)(al — D)1 - Diad)(a} - DY)’

(1-D*)P(D% ) =

Just to carry out the calculation a little further, we multiply this term by the
rest of the integrand, after which using the residue theorem twice and performing
considerable amount of algebra (not included here) gives us

1 1 dzy dx
— (1 -D¥P(D*g¢") dg = L2
/50(4) P(D;g)4< JP(D597) dg omi 2mi

|z;|=1

—D)(1 — Das) (w3 — D)2y

L1-DY)

(1 — zqm9) (22 — 1) (1 — D) (2
(1 = D*af)(zt — D*)(1 — D*a3)(v3 — D)

X

(

)
_1 % dl’g T _1 1
4 omi (1+ D) (22 4+ D?) 41 —D*

Poles in the first integration are (D, —D,iD, —iD), in the second (iD, —iD).

If we wanted to continue the whole calculation by hand, we would probably lose
that hand. Expanding the Plethystic Exponential gave us 5 terms, each leading to
a pretty large integrand. Poles are easy to find, but either we have poles of higher
degree, so we must take derivatives to calculate the residues, or there are multiple
(up to 3) poles for a single term. And we must do that twice, for z; and 5.

Thankfully, Mathematica comes to the rescue. Simply by calculating the indicated
residues and summing them all, we obtain (since AH |4 = 0)
1

= =14D'+D°+D*+ D" +2D" +- ..
s AoDya Dy D D AP DD

Hy(D) = H(¢,D)

reproducing the result calculated in [1]. This implies there is only one independent
operator of the type 9°®* = ®* (obviously), one of the type 9*®*, one of the type
9%®*, but two of the type 9'2®%, and so on.

Remark 5.3 (Interpretation of the Hilbert series). The interpretation of this Hilbert
series is slightly different from the ones in Example 2.14] to which Remark is
directly applicable. Since now we have fixed field content, the form of Hy reflects
independent possibilities of assigning a given number of derivatives to the 4 fields
® and contracting them.

For example, we can take following assignments of 4 and 6 derivatives
— 1 —
00P0POPD = 0°0,90°P0,dP and 0PIOPIIPD = 0°0, 200, P00, DP
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to be “generators”, and any operator of the form 9"®* can be already constructed
by repeatedly assigning derivatives and contracting them in the same way.

Remark 5.4 (Challenge). It is pretty easy to transform any operator of the form

0*®* to the trivial zero operator or to the one stated above, for example
~ 0 by IBP ~ 0 by EOM

N

02IDIDID = 0,20° DL D = (0,22 SGHOP) — 0,80 D(5"G,®) @
— 0°0,90°®9,dD — 09,P0°0* DI, dD
—
= — 209,99 PO,dD = —200DPODPIDD.

We encourage the reader to show that any (non-trivial) operator of the form 9°®*
is equivalent to the one stated above. If it does not feel like a challenge, have a go
at operators of the form 98®* or 91°®*. Hopefully, it will be sufficient evidence,
that even in the simplest example of a single scalar field, the combination of EOM
and IBP relations leads to complexity that should not be underrated.

And everything gets exponentially more tangled for higher number of fields, where
GDC relations start to kick in. Still, the Hilbert series formalism can give us
(if we are able to perform the integration) information to all orders in powers of
derivatives for any fixed field content ®".

The authors of [1] explicitly calculated the Hilbert series of a single scalar field
H,.(D) for r = 1,...,8, but only in the dimension d = 4. As is expected, our
calculations agree with theirs. It is very hard to go beyond the field content of ®8
(integrands become so lengthy, that even Mathematica has really rough time), so
we will rather explore the dependency of the Hilbert series on the dimension d.

Below, in Tables [5.1] and we list the Hilbert series for » = 4,5,6 and all
dimensions d > 2. For illustration, we list the corresponding expansions to the
order of 9*°®" in Tables (.3l to 5.5l We will make a comment in Section [5.2)
concerning the independence of H,.(D) on d for d > r. For easier comparison of
their dependence on d we also include Figures [5.1] and [5.2] To our knowledge,
results of H,.(D) for » = 5,6 in dimensions other than d = 4 are novel.

Remark 5.5 (Analysis of Hy4(D)). Comparing H4(D) for d = 3 and d = 4 we can
see, that in d = 3 we have one additional operator for every one in d = 4, but
with 9 more derivatives. This corresponds to the operator

X [ T/—= |
e?(0000,9)(000,P)(00.P) (D).

Such assignment of derivatives “can be used only once”, because by repeating it

twice, we can deconstruct two €*® as a combination of §*®, thus only contractions,

which are already accounted by the denominator.

Why there is no such operator in d = 4, where we would contract derivatives
with €2*¢4? Since derivatives commute, in order to obtain non-trivial operator, we
must contract €2 with derivatives standing before different fields ®. But we
are always able to move all derivatives in front of one ® to the others by use of
IBP relations, thus such operator does not exist. This applies in general for scalar
fields, so operators with €*® exist only for d < r. Note that the only source of
operators with odd number of derivatives are €*® in odd dimensions.
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For some reason, by going down to d = 2 we totally lose the operator of the type
9%®% (and also its “iterations”). We will study this in more detail in Section .

d H4(D) Hs5(D)
B (1 =D -D%(1 - D8)(1 - D¥Y)(1 — D12)
(1 —D*)(1 — D) (1 —D* (1 —Db% (1 —D8)(1—D)(1-— D)
5 1+D° 1+D°+D"™ 4+ D" 4 D" 42D 4 D' 4 D" 4 D'® 4 D> + DY
(1-D4H(1 -D%) (1=D%(1—D%(1—D)(1 - D'2)
5 1 1 4+ D2
1-D* (1-DY(1-DR)

Table 5.1: The Hilbert series for a singe scalar field, with a fixed field content ®* and ®°.

d Hg(D)
1+2D1045D124-7D144-9D16411D18+13D20 4 14D224 21 D24 424 D26
> 6 +28D28432D30426D32422D34413D36 4+ 7D384 3P40 P42 P4

(1 =D (1 —D%)*(1 — D8)*(1 — D10)*(1 — D12)

142D1045D12 4 7Dl D54 9pI6 4 D17 111 D184 3D19413D20 4 7D21 4 14D22 1 13D23 421 D24
+22D?5 424 D26+ 26 D27 428 D28 +32D29+32D30+28D31 426 D32 424 D33 +22D34 421 D35
5 +13D56+14'D37+7'D38+13D59+3D4O+11D41+'D42+9'D43+D44+7D45+5D47+2D49+D59

(1 =D (1 —D%)*(1 — D8)*(1 — D10)*(1 — D12)

1+3D104+6D12411D14+17D164+22D184 31D20 436 D22 +48D24+53D26 4 58 D28
4 +58D304+48D324 38D34423D36 1+ 14D38 4 6D40+4D42 4 2D P46

(1 =D (1 —D)*(1 — D8)*(1 — D10)(1 — D'2)

1+D842D%4-2D10 42D 4 3D12 1 5D13 4 4D 6DI5 4 5DI6 4 6DIT 46D+ 6 DY +5D20 1 6D21 4-6D22
3 +5D23+6D24+6D25+6D26+5D27+6D28+4D29+5D30+3D31+2D32+2D33+2D34+D35+D43

(1 —D*)(1 —D)*(1 — D8)(1 — D0)(1 — D12)

1+D4—|—D6—|—2D8—|—D10—|—3D12+3D16—|—D18+D22
(1 —D8)(1 —D2)°

Table 5.2: The Hilbert series for a singe scalar field, with a fixed field content ®5.

d4n

d »n 012 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

>4 1 0001010101 0 2 o0 1 0 2 0 2 0 2
3 1 60001010111 0 2 1 1 1 2 1 2 1 2
2 1P 001000100 0 1 o0 o0 o 1 0 0 0 1

Table 5.3: Coefficients of the Hilbert series for a singe scalar field, with a fixed field content ®%.
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d5n

d n 01 2 3 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20
>95 10 001 01 0 20 2 0 5 0O 4 0 8 0 9 0 13
4 10 001 01 0 20 3 0 5 0 6 0O 10 0 12 0 17
3 1000101011 2 0 4 2 3 3 6 3 7 5 8
2 10 001 00010 0 0 3 o 0 0 3 0 0 0 3
Table 5.4: Coefficients of the Hilbert series for a singe scalar field, with a fixed field content ®3.

1000 d
100:*
: o
) —
s
10 . 5 5 ) o o ° ©
7(1‘0 ‘ ‘ ‘ 2‘0 ‘ ‘ ‘ 4‘0 ‘ ‘ ‘ 6‘0 ‘ ‘ ‘ 8‘(;
n

Figure 5.1: Semi-log plot of ds,, that is the number of independent operators of the type
0" ¢°. For dimensions d = 2,...,5.

Remark 5.6 (Analysis of H5(D)). Now turning our attention to Hs(D), we see
even higher level of complexity. Not only we have more terms in the denominator,
reflecting more building blocks of how one can assign and contract derivatives, but
also even in d > 5 where we can not use €, we have more starting blocks. This
simple interpretation of the numerator as extra starting operators is possible in
general for a scalar field [1].

However, in a more complicated EFT we can encounter Hilbert series which can
not be brought to the canonical form (see Remark with only positive terms
in the numerator. If this is the case, and we will encounter it in Section [5.3] it is
an indication of more complicated relations between operators.

Comparing Hs(D) for d =4 and d = 5 we can see, that in d = 4 we have several
(similarly as in discussion about H4(D)) additional operators for every one in
d = 5. For example, the term D' corresponds to the operator

| I———1 I
aabcd(aaaaacb) (000, ®)(00.P)(0qP)(P).
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In d = 3 we have some similar “starting” operators (just check that some terms in
the numerator are same for d = 3 and d = 4, or even d = 5), but others dropped
one D, which corresponds to € with one index less.

dGn
d n 012 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
> 6 1000102040 6 0 13 0 19 0 36 0 58 0 97
d 10001020406 0 13 0 19 1 36 1 58 4 97
4 10001020406 0 14 0 23 0 45 0 75 0 132
3 1 000102032 5 2 10 7 13 12 23 19 35 32 50
2 1 0001010301 0 6 0 1 0 8 0 4 0 10

Table 5.5: Coefficients of the Hilbert series for a singe scalar field, with a fixed field content ®6.

1010 6 |
)
4
3
5 M= o2 |
o 10 <2
i~
| o |
| L | L L L | L | | | | | |
5 10 50 o |

n

Figure 5.2: Log-log plot of the coefficients of Hg(D) ind =2,...,6.

Remark 5.7 (Analysis of Hg(D)). Although looking at Table 5.5 it seems there are
more operators in d = 4, at around n ~ 100 dimensions d = 5, 6 overtake the lead
(see Figure [5.2). For even n we have d$=° = d4-%, but in d = 5 we additionally
have odd operators containing *°.

Going down with d, the number of terms in the denominator decreases due to
GDC relations, leading to exponential suppression of the number of independent
operators with given D. Asymptotics of operator Hilbert series were studied by
Melia and Pal [15]. Perhaps surprisingly, they seem to approximate pretty well
even for small n.
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5.2 Sidenote — Gram determinant conditions

As we already mentioned several times, when lowering the dimension d some
operators can vanish, as is evident from Tables 5.1 and We will give an explicit
example of such operator and make some comments about this phenomenon.

The simplest example we already pointed out were operators of the type 9°®4,
which somehow vanish in d = 2. We will now show that EOM conditions are
enough to eliminate one of the operators written out in Remark[5.3] Just expanding
contractions, using the EOM relation (in d = 2) for green terms

DOD = 0°9,d = 9',® + 20d =0 —> 0'0,d = —50,D,

and commuting some of the second derivatives leads to (terms cancel pair by pair)

+019, 2019, 2910, P +910, 9919, o1 PP

+020, 9019, P9, PP
e +010:, 020, 2910, 2P +91 0y PO2H, OO DD
_ 402053020, D0 020D __ +0202D0%0, DO D DD __
08@06@88@@ - +6161 @8182@6281'@(1) - 7()??)2‘1)5)1f)2¢’(32531 P - 0
+0201 PO 92 DO% 0, PP 820, PPy PO 5 DD
+0102, 8020, 0920, PP
+020500202, D020, PP —019: 9919, 9010, 2P

But where are the celebrated GDC conditions? Attentive readers may recognize,
that we encountered very similar operator already in Section[2.1} Just by appending
one @, by the same manipulations we obtain a Gram determinant condition

| ey — — | —1_
0 = 949, 80°0,®990,8D = HIPIIPIIDD + 200PIDDPIIDD — 300DIOIDPIIDD.

Since the first and the third term on the right side are automatically zero by
EOM, the second term must necessarily vanish in d = 2 “just” by EOM.

Essentially the same thing happens for Hg(D) (see Table when going down
fromd =5tod =4, or fromd=4tod=3. It would be interesting to understand
what happens from d = 3 to d = 2, where we lose (1 —D*)(1 — D%)?(1 — D), but
instead gain (1 — D'?) in the denominator, which is rather peculiar. As of now,
we do not have any explanation.

On the other hand, it is interesting to study when GDC do not play a role, either
when there are none or they are automatically satisfied. In the special case of
scalar fields, such conditions can only exist for d < 7, otherwise it is not possible
to construct a trivial operator that is non-trivial in some higher dimension. This
is because we need to antisymmetrize in at least d+ 1 indices, but since derivatives
commute and ® do not have any indices, the only possibility is to antisymmetrize
indices of partial derivatives standing before different fields ®.

One would then expect some GDC relations manifesting already for d+1 = r, but
quick examination of Tables [5.1| and shows otherwise. This is a consequence of
IBP relations, which admit us to move all derivatives in front of one ® away, thus
we are able to find at most d indices in which we can antisymmetrize. Therefore,
GDC conditions in the presence of IBP become effective for d +2 < r.

Preceding discussion holds in general for scalar fields, but things can get more
complicated very quick. For example see the next section.
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5.3 Photons, electromagnetic field

After having some experience with the scalar field, we can try to apply our
formalism to slightly more complicated case of electromagnetic field. This section
is mainly based on the work of Chowdhury et al. [16].

It is advantageous to choose the Maxwell tensor Fy, = d, A, = 20,4, as a
building block of the Lagrangian density instead of the vector potential A, since
it automatically accounts for the gauge invariance. The only essentially new
thing will be the construction of the single particle graded representation Rp, and
calculation of the corresponding graded character x Rp-

Calculation 5.8 (EOM and other relations). First, we must understand the structure
of the building block F};. The kinetic Lagrangian density has the well-known form

1
Liin(Ap, 0, A4) = ~1 W

to which correspond free equations of motion (the first set of Mazwell’s equations)
0"F, = 0. (EOM)

Another relation F,;, automatically satisfies from its definition as exterior derivative
of Ay are so-called Bianchi identities (the second set of Mazwell’s equations)

38[anc] = danc = dadbAc = 0. (Bianchl)

One relation we will use is already a consequence of previous two, because

by [EOM) by [EOM)

0°0uFoe = 000 Fye + 0" Fryy + 0By Frog = 3001 Frpgy ==L (),

Remark 5.9. The Hilbert series for the electromagnetic field will also include the
kinetic term (because we work with F,, instead of A,), whereas in the case of a
scalar field the kinetic term is always eliminated by IBP and EOM.

Also note that we must make some corrections by hand, namely account for
Chern-Simons topological terms of type A A F'A --- A F, or overcounting of
FAFN...NF=d(ANdANAN...NdA). But more on that later.

Now we would like to build Ry by repeatedly applying derivatives on Fj;, but we
also need to continuously utilize all possible relations to avoid any redundancies.
It is therefore useful to decompose representations we obtain to smaller pieces,
some of which will be zero by usage of the relations.

Calculation 5.10 (Direct "manual” decomposition of J,Fj. using indices). Using
antisymmetry of F;, we can perform manipulations

0

—~ =
aaﬁjbc + + OpFra 38[aﬁjbc} 38[<1F717c]
3aaF[bc] = aaF})c + Oyl = 2a(an)c = 28{an}c + %6aba(lE/c
aaFjbc + - 2a(aFc)b - 28{a176}b - %6(108(]17(%7
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where {ee} denotes the traceless symmetric part, thus obtaining decomposition

4 4
aaF[bc] = a[anc] + *a{aF[b}c] - 75a[bach]d7
3 3d
where it is understood that first is performed the antisymmetrization [bc] and only
after that the traceless symmetrization {ee} in the corresponding indices. The
first fully antisymmetric term is zero by (Bianchil) and the contraction in the

last term is zero by (EOM)).

Remark 5.11 (Young diagrams and symmetrizers). Recalling Remark we can
efficiently describe this decomposition by usage of Young diagrams. Since the
theory is rather complicated, in the following we will work just intuitively. We
assign to every index one box, and represent their symmetries by a certain left-
and top-justified diagram. For example, to fully symmetric traceless tensor and
fully antisymmetric tensor we assign diagrams

2
T{a1a2...an} < ? and T[alaz...an] < ? -

More complicated mized symmetries (irreducible under &,,) are represented with
diagrams of multiple rows and columns, for example

bla
Otafipy y ot

where the Young diagram A\ is always interpreted as follows:

e First perform all permutations preserving each column of A, and sum over
them multiplied with the corresponding sign of permutation.

e Then perform all permutations preserving each row of A and sum over them.

This is essentially the definition of Young symmetrizer corresponding to .

Calculation 5.12 (Decomposition using Young diagrams). To decompose tensor
of the form A\ ® O, we essentially make all available antisymmetric products
and all available symmetric products, which we further decompose to traceless
symmetric product and the corresponding traces. Leaving out the traces, this
can be represented by attaching the box [0 to all possible places of the Young
diagram \. Thus, the decomposition performed earlier directly using the indices
can be done diagrammatically as (gray boxes represent contraction)

Bianchi

EOM
7
@ [o. [F.]

Following the prescription, we easily find the decomposition of 9,0, F|.;q as

.| Os

Bianchi
Ol 091=0 EOM Bianchi + EOM

F..|o
F..| 0. Te. F..|o. 0. F. 9, F.|o. !:/.

]
o= @ }F— ® ® “
F. — F.o.| 7 |F. |o.|F. E.
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Calculation 5.13 (Single Particle Graded Representation Ry for electromagnetic field).
Continuing further, same arguments give us that any trace is zero by and
any antisymmetrization containing derivative is zero by or symmetry
of derivatives, therefore we obtain Ry of the form

Flay)
83{3%}&
F ——

{a1Ya2 L' [a}b]
' = pHeD*Hlep*H e 0" H I Ue -

Rr = Span

Otar *** Ou, Flayyy

with the graded character (because F,, = d,A; already contains one derivative)

Xg, (Dsz) = Dxg(x) + D*xp(x) + Dxgm(@) + Dxgo(®) + -

Calculation 5.14 (Graded character of Rr). Casting also the SPGR Rg for a single
scalar field (see Derivation in the language of Young diagrams takes the form

(we denote the trivial representation by () .

_ ofe} 2 n /==
Re =SSO =0eDPOeD'(I®- - D" 1B
with the corresponding character

Xp, (Di ) = X g0y ) (Di ®) = 1+ Dxg(®) + D*X (@) + DX (®) + -+

Using Proposition [3.49| and some reordering we can calculate

Xy (D3 2) (Dxg(@)) = (1 + Dgl@) + Dx(@) + Dxp(@) + - ) (Pxg(@))
= Dxg(®) + D*Xg.0(®) + D Xeppun(®) + D X (®) + -
= Dxp(@) + D*xp(®) + D’xgp(®) + D'xpp(@) + -+

+D*xglx) +Dxgplx) +Dixgo(e) +--
+ D’ +Dxg(x)  +Dixplx)  +-o
= (g, (D) = 1) + Dxp, (D; @) + Dy, (Ds ),
where in the third equality the first line is the traceless symmetrized product, the

second line is the antisymmetric product, and the third line is the trace. We can
thus express the graded character of Rp as

(Dxg(@) — (14 D?))x,, (D;@) + 1
D
(D= D*)xy(®) — (1= DY) P(Dsz) + 1
D
where the character xg is given in Example [3.92]

Xp, (D, x) =

To calculate the Hilbert series Hpr(D) with a fixed field content F", we proceed
exactly as in Section just with the substitution x , (D;®) — x,_(D;x). We
list some of the resulfs in Table [5.6], partly reproducing and partly extending
calculations of Henning, Lu, Melia, and Murayama [1] and Chowdhury et al. [16].
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d AHpa(D)  miscount a5 Ho s (D)
2 2 4
> 10 +3D° + 2D
(1-DY(1—DY)
2 +3D% 4+ 2D
9 1 5 —D
(1 —D%(1— DY)
< 2 +3D% + 2D* ,1
(1 -DYH(1 — DY)
D3 4+4D*+4D54-16D%+-10D7 +39D3 +17D4-69D104-28 D11
+99D1213-36D13—21-0125D1‘;1|—41Dlz;-135D;§+43D;Z +12613518
; +243D% 420" | 8D 10D 28D e 9D DL 0D
(1— D% (1 — Do) D (1-DY(1-D%(1—D8)(1—DW)(1—D2)
144D +13D*4-34D6 +73D8+121D10+168D12 +210D14 226 D16
6 2 +3D% + 2D 4+ D° +213D'84182D20 113122+ 79D?4 +42D?6 416D+ D30 D32 D36
(1 —D4)(1 — DY) (1—D1)(1 — D%)(1 — D8)(1 — D0)(1 — D)
D+5D3+4D*4+16D5+16D°+30D7+36D8+51D%+63D10+ 73D +89D12492D13
24 3?2 + P4 +110D4+103D5+117D164+103D17+108D18+91D19488D20+ 71 D21 4 59D22
5 +49D23432D24427D254+13D26412D27+2D28 43D _3D30_2p32_p33
(1 —D*)(1 - DY) (1 — D4 (1 — DS)(1 — D8)(1 — D0)(1 — D'2)
4 6 8 10 12 14 16 18
| 3+5D+ D2 2 (PP TR R P D! 2D DL )
(1 —D*)(1 — DY) (1 —D4)(1 —DO)(1 — D¥)(1 — D9)(1 — D'2)
; 1+ D2 4+ D° — Db D o D D s T

(1— DY) (1 - D5 (1— DY) (1 D%)(1— D91 — D)

Table 5.6: The Hilbert series for an electromagnetic field, with a fixed field content F'4 and F5.

Remark 5.15 (Analysis of the highlighted terms in Hpa). In the listing of the Hilbert
series, we divided by D* and D®, because such number of derivatives is carried
automatically by F4 and F3, respectively. It is peculiar that for Hpa in d = 7 it
seems there is a with only 3 derivatives instead of 4. This
is exactly the already mentioned topological Chern-Simons term ,
which is a top-form that can be integrated over the space-time. The gauge
transformation A — A + du only contributes a total derivative term, because

duNFANFANF =duNdANdAANAA =d(uANdAANdANAdA).

When calculating Hy ga in d = 7 we also obtain additional term of —D”, which is
outside of the fraction. It reflects the fact that the Hilbert series approach does not
see ANF N F AF itself, it was able to find operators of the type 0"AANFAFAF,
that is with n > 1 derivatives somehow distributed between A and F's, because
one derivative can always be borrowed to form 8"_1F.[.F..F..F..] up to total
derivatives. For an example of this procedure see Subsection 5.4 of [16].

Similarly, the miscount +7D" in d = 8 is caused by directly working with F instead
of A. The Hilbert series does not realize that the operator F A FFAN F' A F is
actually a total derivative, simply FAFAFAF =d(AANdAANdAANdA).
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It is immediately visible that the term —7D” in d = 9 is a miscount, since it would
imply —1 independent operators of the type OF A F A F A F. It has to do with
x(F' AN F AN F A F) being a co-closed one-form, because of Bianchi identities. It is

also co-exact, since analogously as before we have

o-
*(FEAFAFAF)=%d(ANFAFAF)=xd« "*(ANFAFAF),

but our approach does not “know” about the presence of A, so it miscalculates.

After correcting these miscalculations, it seems we obtain the full Hilbert series
Hrpa. For construction of the operator basis in d = 4 see [16].

Remark 5.16. The Hilbert series Hp4 in d = 3,4 can not be brought to the
canonical form with only positive terms in the numerator (see Remark [5.6). For
further discussion on the general structure of the Hilbert series see [1].

Remark 5.17. To our knowledge, results of Hy ps in d = 3,6, 7 are novel.

5.4 What’s next?

We did not even come close to exhausting all interesting EFTs, to which our
formalism could be applied. We will just list some of the possibilities:

e We only worked with one particle field at a time, but it is straightforward to
consider multiple particle fields at once (see Derivation [4.23]).

e EFTs of gravity are pretty similar to the case of the electromagnetic field, see
for example [17] or [16].

e One of the first applications of the Hilbert series approach was done for the
Standard Model EFT (SMEFT) specially in d = 4 [13]. Gauge invariance was
accounted for simply by integration over the gauge group (see Derivation [£.24)).
Since SMEFT also contains fermions, integration over the covering group
Spin(4) of SO(4) was necessary, but also easily realized by isomorphism of

groups SU(2) x SU(2) = Spin(4).

e From the beginning we restricted ourselves to the case of linearly realized
symmetries, but for example Chiral Perturbation Theory (xPT) does not fall
to this category. For a pretty detailed treatment see [1] and [1§].
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Conclusion

In this thesis we studied operators in the context of Effective Field Theories. Our
goal was to compute the Hilbert series encoding information about the number of
independent operators of a given type.

Recognizing possible relations between operators — Equations Of Motion (EOM),
Integration By Parts (IBP), and Gram Determinant Conditions (GDC) — led us
to the study of the representation theory of compact Lie groups.

Along the way we learned handful of things, which can be interesting purely from
the mathematical point of view, but they also equipped us with the tools necessary
to derive the Master Formula for the Hilbert series. More precisely, we obtained
splitting H = Hy + AH, where we found an explicit formula only for the main
term Hy. Thankfully, the correction term AH typically contains only couple of
contributions, which can be calculated by hand.

Finally, we illustrated usage of the formalism in the case of a single scalar and
electromagnetic field. With the help of Mathematica we were able to compute
Hilbert series for various fixed number of particle fields in several dimensions [14].
To our knowledge, some of our results are novel, as we pointed out in the text.

It would be interesting to optimize the code in Mathematica as the computational
complexity is rather high, since going to higher dimensions or higher number of
particle fields results in enormous computation time.

The developed formalism is applicable in a quite general setting. However, there
are some aspects we did not have the space to cover adequately, mainly the
treatment of fermions (spinors) and inclusion of parity and charge conjugation.
The former is just briefly commented on in |1] (but it certainly deserves a deeper
discussion), and the latter was thoroughly analyzed in [18].

Unsurprisingly, a lot of questions are waiting to be answered: How to proceed
generally if particle fields transform non-linearly under the action of the group?
Can we obtain the Hilbert series in a fully closed form? Can we automatize
calculation of the correction term AH? It just seems, that fun has no limits ...
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