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Abstract
We systematically develop the Hilbert series technique for counting independent
operators in Effective Field Theories. In the hope of providing more approachable
entry point to the subject we include a detailed introduction of all necessary group
theoretic tools (in a rather mathematical definition–theorem–proof style). Finally,
we apply the formalism in the case of a single scalar field and also electromagnetic
field, partly reproducing and partly extending known results.

Keywords
Effective Field Theory, Operator counting, Hilbert series, Group theory, Lie
groups, Representation theory, Graded representations

Quick summary
In Chapter 1 we briefly introduce the framework of Effective Field Theories,
giving us background and physical motivation to study the structure of operators.

In Chapter 2 we recognize possible relations between operators and define the
fundamental object of our interest — the Hilbert series — which effectively encodes
information about the independent operators of a given type.

In Chapter 3 we thoroughly build parts of the representation theory of compact
Lie groups, which shall prove useful for computing the Hilbert series.

In Chapter 4 we finally derive the Master Formula for the Hilbert series, utilizing
everything we learned in previous chapters.

In Chapter 5 we apply the developed formalism to count operators for a single
scalar field, and also in a more complex case of the electromagnetic field. We
highlight numerous intricacies, which are present even in these basic theories.
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Introduction
Every physical calculation applied to the real world is only an approximation.
This is mainly a consequence of two factors — we can not measure and prepare
initial states with infinite precision, and we do not possess the exact theory. Even
if we did, it is almost impossible to calculate anything without making some
approximations and mathematical shortcuts along the way.

Take for example particle physics, where it is hard to complete the calculations
in full generality using the present “full-fledged” theory, which furthermore still
might miss even more particles. However, in a given energy range it is enough to
consider only a couple of particles to obtain relevant quantitative predictions, and
the existence of additional particles only leads to certain corrections. Adressing
them systematically would be desirable.

This is the main idea of Effective Field Theories (EFTs). Being perturbative in
their nature, EFT Lagrangians are essentially infinite series, every next order
giving additional corrections. Even if one wishes to calculate up to a fixed order,
there may be many operators to consider. It is therefore of interest to find the
operator basis, which parametrizes all physical phenomena in the realm of the
given effective theory, but already does not contain any redundancies.

In general, construction of such a basis is immensely difficult because of various
non-trivial relations between them. Nonetheless, it is possible to count the number
of independent operators of a given type, which certainly helps. This thesis aims
to derive the formula for these multiplicities, and to develop all the necessary
tools along the way.

The group-theoretical approach we will develop was pioneered by Henning, Lu,
Melia, and Murayama [1]. The research paper is lengthy, spanning over 100 pages
and presents multiple approaches, with the main one presupposing knowledge of
conformal representations. As a result, inexperienced readers may struggle to
understand both the details and the main ideas. We will try to complement this.

We assume the reader is well versed in the subjects of linear algebra and differential
geometry, as well as familiar with some elementary constructions in group theory
such as cosets and quotient groups. Otherwise, we have attempted to provide
a mostly self-contained exposition, building up essentially all necessary theory
about Lie groups and their representations from the beginning.
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1. Effective Field Theories
Wondering about physics one may stumble upon a fundamental question:

How can we calculate anything without knowing everything?

We do not have the Theory of Everything, yet we are able to perform vast amount
of precise calculations in practically every domain of the Universe.

The predictive power of physical theories is rooted in the fact that only a couple
of relevant degrees of freedom play an important role in a given problem. The
act of neglecting the rest is the first step in the progress of understanding any
physical phenomena. One could claim that in a certain sense [2]

all physical theories are effective theories,

where the word effective reflects the restriction of a given theory to only a certain
range of effects while being oblivious to the rest.

Just take for example Newtonian mechanics, which often works only with point
masses as an idealization of particles with possibly complicated internal structure.
Yet, it offers brilliant tools for our everyday life and explanations of many effects,
ranging from the usage of a lever to the motion of celestial bodies.

Another example can be found in well-known theories of electrostatics, magnetism
and optics. Historically, these were separate subjects without many references
between each other, and it was only later realized that they were manifestations
of the unified Maxwell theory of electromagnetism.

Our current “fundamental” theories of electroweak and strong interactions are
formulated in the language of quantum field theory and gauge theory. Together
with the classification of all known elementary particles they are contained in
what is called the Standard Model of particle physics. Still, we know that the
Standard Model can not be complete, as it (among other things) lacks account of
General Relativity. Currently, the Standard Model is often viewed as a low-energy
effective field theory (EFT) of some more complete theory [3].

1.1 Advantages of EFTs
In the rest of the thesis, we restrict ourselves to field theories, that is theories fully
described by the action as an integral of the Lagrangian density over the whole
space-time manifold. Moreover, we will assume the context of particle physics,
where together with Lorentz transformations we often encounter additional gauge
transformations. Naturally, the action must be invariant with respect to both.

To be more precise, the term effective field theory in the context of particle physics
is used in a more strict sense. We will not need most of the following, but to have
some background and motivation for our problem we mention some important
features, examples, and advantages of EFTs.
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Definition 1.1 (Effective field theory). A low-energy effective field theory (EFT)
T is described by [2, 4]:

(a) The degrees of freedom/particle fields, whose behavior T tries to explain.

(b) The domain of validity, usually characterized by an energy scale Λ. For
energies well below the characteristic energy scale (E ≪ Λ), T properly
explains physical phenomena of interest. For energies approaching the
characteristic energy scale (E ≈ Λ) a transition to a more complete theory
or a different and more appropriate EFT may be necessary.

(c) The perturbative expansion of the EFT action ST in a suitable parameter
(prime example being E/Λ), correcting for effects of initially ignored
“irrelevant” degrees of freedom by introducing additional interaction terms.

Remark 1.2. Previous statement about all theories being effective theories can be
viewed as talking about leading-order effective theories.

Example 1.3. Here we just mention some established EFTs [5]:

• Fermi theory of weak interactions — effective theory for the weak interactions
at energies below the W ± and Z0 masses.

• Heavy Quark Effective Theory (HQET) — low-energy dynamics of hadrons
containing a heavy quark.

• Chiral Perturbation Theory (χPT) — dynamics of pions in a strongly coupled
low-energy limit of Quantum ChromoDynamics (QCD).

• Standard Model Effective Field Theory (SMEFT) — used to analyze deviations
from the Standard Model and search for Beyond Standard Model physics.

Remark 1.4. There are numerous advantages of using EFTs, many being hard to
appreciate without a deeper dive. We only list some of broad relevance [2, 5]:

• Even if we are equipped with a more complete theory, calculations in a certain
energy range can be drastically simplified by using an appropriate EFT.

• From the beginning we are neglecting aspects unimportant to the problem
and remain focused on the relevant degrees of freedom.

• Isolation of relevant degrees of freedom may reveal new symmetries that
otherwise would have remained obscured.

• When dealing with yet unknown physics, EFTs provide us with a systematic
perturbative parametrization of physics in a certain energy domain.

• The main idea — if we believe our problem can be understood by means
and tools of quantum field theory, we can not go wrong by starting with
“the most general Lagrangian” consistent with our assumptions of locality,
unitarity, Lorentz and gauge invariance, . . .

• A unified framework utilizing a perturbative expansion containing only a
few coefficients can be useful for placing model-independent constraints.
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1.2 Construction of EFTs
The construction of some particular low-energy EFT can be outlined by the
following prescription [4]:

(1) Identify all relevant degrees of freedom {Φi} and symmetries they satisfy.

(2) Construct the most general effective action consistent with locality, Lorentz
invariance and additional (gauge, global, etc.) symmetries,

Seff[{Φi}] =
ˆ

M
ddx

⎡⎣Lkin({Φi, ∂aΦi}) +
∑︂

j

cj

Λ∆j−dOj

⎤⎦, (∞)

where d is the dimension of the space-time manifold M, Lkin is the kinetic
part of the Lagrangian density, Λ is the characteristic energetic scale of the
EFT and cj is a dimensionless “Wilson coefficient” corresponding to the local
operator Oj with the mass dimension ∆j ≡ ∆[Oj].

(3) Calculate physical observables (to the required order of accuracy).

(4) Determine Wilson coefficients cj by matching the EFT to the already existent
underlying model or to the experimental measurements.

In this thesis we will focus on a part of the step (2), which has certain freedom in
the choice of the set of operators {Oj}. Assuming someone already did step (1)
for us, our goal will be to count all independent operators figuring in the effective
action (∞). Precise meaning of this will be clarified in Chapter 2.

Steps (3) and (4) are mentioned here only for completeness, nonetheless they are
of paramount importance and can be immensely deep.

For simplicity, we restrict our attention only to linearly realized symmetries, and we
will not worry about discrete global symmetries, such as parity, charge conjugation
or time inversion. Throughout the thesis we also assume an implicit Wick rotation
from Minkowski to Euclidean space, thus for our (Euclidean) Lorentz group we
can take SO(d), since we will ignore inversions.

Of course, explicitly constructing the basis of {Oj} would be even better, but it
is in general a formidable task. The next best thing is to at least gather some
information about the number of operators of different types, which fortunately
turns out to be a feasible goal.
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2. The Operator Basis
The notion of operators is probably clear, but before advancing further, it is better
to fix the terminology to avoid possible ambiguities.

Definition 2.1 (Operator, invariant/scalar operator). An operator O is a local
object composed only from the particle fields and their derivatives at a given
point of space-time. An operator is called invariant or scalar if it is Lorentz
and gauge invariant (and also invariant under any other symmetry group).
Only scalar operators can appear in the Lagrangian density, since the action
can not depend on the choice of an observer.

Remark 2.2. Operators naturally form a linear space, since we are free to multiply
them by a constant and add them together. We can thus specify the EFT by the
choice of a single scalar Lagrangian operator L from the big space of all operators
(actually, it is usually a series in a suitable parameter, see Definition 1.1).

As we suggested before, operators with a different appearance can lead to the
same physical effect. Equivalently, a mapping from the space of all Lagrangians
to the space of S-matrix operators has a nonzero kernel. Unsurprisingly, it is
advantageous to work with a minimal set of operators covering all possible physical
phenomena in a given EFT, thus we come to the following definition.

Definition 2.3 (Operator basis). The operator basis B of the EFT is a minimal
set of operators leading to all physical phenomena in the realm of the EFT.
We will denote the space of all operators generated by B as K ≡ SpanB.

Remark 2.4. As in any vector space, there is a bunch of equivalent operator bases
for a given EFT. We will loosely refer to any chosen one as the operator basis.

In this chapter we will recognize possible relations/redundancies/constraints
between operators, which effectively lower the number of linearly independent
operators, thus reduce the size of B and the dimension of K.

Next, we will define a weighting scheme for categorizing different types of operators,
enabling us to compactly encode reduced information about the operator basis
into a generating function called the Hilbert series, our primary object of interest.
More specifically, it will contain the numbers of independent operators for all
distinct types.

2.1 Equivalence relations between operators
From classical theoretical mechanics we know very well that the form of the
Lagrangian is not entirely fixed. By performing a transformation to a different set
of generalized coordinates, we visually change the Lagrangian, but the physics is
the same (we have just changed the parametrization of the configuration space).
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Note that terms proportional to the equations of motion are in fact just trivial
classically (along the classical trajectory). Additionally, total derivative terms do
not change the dynamics, as they reduce to boundary terms in the actions, which
do not play a role in a variational principle with fixed boundary conditions.

But how does the story play out for an effective quantum field theory? Quite
similarly, the total derivative (divergence) terms can be straightforwardly excluded
from the effective action (∞). However, in quantum theory we can not eliminate
the operators proportional to the equations of motion simply by substitution as
in the classical case.

Nonetheless, we are still able to perform field redefinitions, which in general do
not change the S-matrix. This allows us to systematically eliminate operators
proportional to the lowest order equations of motion (obtained from Lkin) in
exchange for a higher order terms in the perturbation expansion. A more in-depth
explanation is provided by Manohar [5, Chapter 6]. Thus, for the purpose of
counting independent operators, we can simply ignore such operators.

Last, but by no means least, we have relations induced by the finite-dimensionality
of the space-time manifold. To give a simple example, assume we are in d = 2
and we have one scalar field Φ. Since in d = 2 the antisymmetrization of 3 indices
is automatically zero, we obtain the following relation between scalar operators
(we first make the antisymmetrization, and after that we contract the indices)

0 != 3! ∂[a∂aΦ∂b∂bΦ∂c]∂cΦ
≡ ∂a∂aΦ∂b∂bΦ∂c∂cΦ +

2∂b∂aΦ∂c∂bΦ∂a∂cΦ⏟ ⏞⏞ ⏟
∂c∂aΦ∂a∂bΦ∂b∂cΦ + ∂b∂aΦ∂c∂bΦ∂a∂cΦ

−∂b∂aΦ∂a∂bΦ∂c∂cΦ− ∂c∂aΦ∂b∂bΦ∂a∂cΦ− ∂a∂aΦ∂c∂bΦ∂b∂cΦ⏞ ⏟⏟ ⏞
−3∂a∂bΦ∂a∂bΦ∂c∂cΦ

=⇒ 0 != ∂∂Φ∂∂Φ∂∂Φ + 2∂∂Φ∂∂Φ∂∂Φ− 3∂∂Φ∂∂Φ∂∂Φ,

where the derivatives ∂ always act only on the fields Φ standing directly after them,
and in the last line we just opted for an alternative notation for contractions.

Remark 2.5 (Gram determinant conditions). These finite-dimensionality conditions
are analogous to the statement that r > d vectors {vi}r>d

i=1 can not be linearly
independent, thus invariants created from them obey some relations. Assume we
are in Euclidean space and organize the vectors in the matrix A ≡ (v1| . . . |vr).
We can easily compute the corresponding Gram matrix, which is essentially a
matrix of all scalar products vi • vj (A⊺ denotes the transpose of A),

G ≡ A
⊺
A =

⎛⎜⎜⎜⎜⎝
v1 • v1 v1 • v2 . . . v1 • vr

v2 • v1 v2 • v2 . . . v2 • vr
... ... . . . ...

vr • v1 vr • v2 . . . vr • vr

⎞⎟⎟⎟⎟⎠.

It is a basic fact from linear algebra that Ker A = Ker A
⊺
A, from which follows

that G is singular if and only if {vi} are linearly dependent. We can apply the
same argument for every (d + 1)×(d + 1) submatrix of G, thus obtaining the
so-called Gram determinant conditions. They assert that every (d + 1)×(d + 1)
minor of G is zero, giving us relations between scalar products of vectors {vi}.
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Bringing it all together, we conclude our discussion in the following definition.

Definition 2.6 (Operator relations). Operators Om and On are considered
equivalent (denoted by Om ∼ On), if they satisfy either one of the following
relations or possibly their combination [6]:

(a) Equations of motion — EOM — the usage of field redefinition argument
generates relations of the form

Om
EOM∼ On

def⇐⇒ ∃O′, Φj : Om = On + δSkin

δΦj

O′.

(b) Integration by parts — IBP — we also have relations of the type

Om
IBP∼ On

def⇐⇒ ∃O′ : Om = On + ∂ · O′,

since by the generalized Stokes theorem
´

M ∂ · O =
´

∂MO is a boundary
term, which leaves the dynamics unchanged.

(c) Gram determinant conditions — GDC — some operators are trivially
zero by the finite-dimensionality of M, inducing relations

Om
GDC∼ On

def⇐⇒ ∃O′
⃓⃓⃓
d

{︂
= 0 for d = dim M
̸= 0 for a general d

}︂
: Om = On +O′

⃓⃓⃓
dim M

.

Remark 2.7 (Kinematic polynomial rings). Another useful approach to counting
and even building the operator basis passes to the momentum space by the Fourier
transform, thereby replacing operators with derivatives by polynomials in momenta.
Operator relations are then represented by relations between polynomials, namely
EOM act as on-shell conditions, IBP manifest as the statement of momentum
conservation, and GDC are precisely Gram determinant conditions between scalar
products of particles momenta or Mandelstam variables. The operator basis is
then formed as a quotient ring with the ideal generated by these relations. Reader
is recommended to take a look at the beginning of Section 5 in [1]. However, GDC
relations are highly non-trivial in this approach, whereas they will be efficiently
addressed within the group-theoretical formalism we are going to develop.

2.2 Generating functions, Hilbert series

Consider an EFT with N degrees of freedom (particle fields) {Φi}N
i=1. As it is

desirable to reduce the complexity of full information about the operator basis,
we introduce the concept of operator weight, which defines the operator “type”.

Definition 2.8 (Weight of an operator). Let O be an operator of the type ∂nΦr,
meaning that it is composed of r ≡ (r1, . . . , rN) powers of Φ ≡ (Φ1, . . . , ΦN)
and n derivatives distributed amongst them. Then we define its weight as

w[O] ≡ ϕrDn,

where we use notation ϕr ≡ ϕr1
1 . . . ϕrN

N .
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Remark 2.9. The weighting scheme in Definition 2.8 retains most information
about the basis while still having the advantage of reducing the full information.
Other weightings can be obtained by a change of parametrization, for example
D ↦→ t and ϕi ↦→ t∆[Φi] gives us the mass dimension weighting, w[O] ↦→ t∆[O].

Now, we would like to have an object encoding the information about the basis,
which in our case is the number of independent operators with a given weight.
The notion of generating functions turns out to be exactly what we need.

Definition 2.10 (Hilbert series). The Hilbert series of a given EFT is a formal
series in complex parameters D and ϕ ≡ (ϕi)N

i=1 defined by

H(ϕ,D) =
∑︂
O∈B

w[O] =
∑︂

r

∞∑︂
n=0

drnϕrDn,

where B is the operator basis and drn ≡ dr1...rN n ∈ N0 is the number of
independent operators in B with the weight ϕrDn.

In a certain domain, usually for |D|, |ϕ| < 1, the formal series in the definition
can be interpreted as a converging series defining a holomorphic function.

To obtain simpler expressions, we also include the trivial constant operator
with weight 1, which is the only operator with no field content.

Remark 2.11. Hilbert series are usually defined in the context of graded algebras
or their generalizations [7]. Nonetheless, we will always refer to Hilbert series in
the spirit of Definition 2.10.

Remark 2.12. The power of Hilbert series (or generating functions in general)
arises in cases where it can be expressed in a closed form. This can be understood
either in the context of a formal power series, or (in the domain of convergence)
as really the function obtained by summation of the convergent series.

Remark 2.13. As will be shown several times, a typical summed up Hilbert series
takes the form of

H = N

D
, with D ≡

∏︂
O∈G

(1− w[O]),

where G is the set of generators, which can be multiplied repeatedly to form
operators of higher weight. The form of the denominator D reflects this fact,
which is seen by expanding it as a geometric series. The numerator N encodes
additional operators (which upon repetition decompose to operators generated
from G) and possible relations between operators. In the case of a freely generated
basis, the numerator is unity and all operators can be generated from G.

Remark 2.14. Sometimes it is useful to write the Hilbert series as

H(ϕ,D) =
∑︂

r

ϕrHr(D), where Hr(D) ≡
∞∑︂

n=0
drnDn.

We will refer to Hr(D) also by the term Hilbert series, where we are just considering
operators with a fixed field content, that is of the type ∂nΦr for a given r.
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Example 2.15. Some examples of the Hilbert series are obtained by considering
the theory of N scalar fields in d = 1 with the kinetic term

Lkin({Φi, ∂Φi}) ≡
N∑︂

i=1

1
2(∂Φi)2.

It is particularly simple, because in the absence of the indices there are no
Gram determinant conditions, and every operator is automatically invariant.
Nevertheless, it will be very instructive. For a comprehensive analysis take a look
at the work of Henning, Lu, Melia, and Murayama [6]. We will go through some
of the edge cases:

(1) No relations. This case is rather trivial, because the operator basis can
be easily guessed, namely it is freely generated by the set {∂nΦi} with
i = 1, . . . , N and n ∈ N0. In other words, every operator is obtained precisely
once in the expansion of

N∏︂
i=1

(1 + Φi + Φ2
i + . . .)(1 + ∂Φi + (∂Φi)2 + . . .)(1 + ∂2Φi + (∂2Φi)2 + . . .) · · ·

=
N∏︂

i=1

1
(1− Φi)(1− ∂Φi)(1− ∂2Φi) · · ·

=
N∏︂

i=1

∞∏︂
n=0

1
1− ∂nΦi

.

The corresponding free Hilbert series is obtained by substituting (Φi, ∂) for
their corresponding labels (ϕi,D),

H free
N (ϕ,D) =

N∏︂
i=1

∞∏︂
n=0

1
1−Dnϕi

.

(2) Only EOM relations. Considering the kinetic Lagrangian density Lkin, the
relations generated by free equations of motion are ∂2Φi = 0. Even simpler
than before, because we have ∂2Φi = 0⇒ ∂nΦi = 0 for n ≥ 2, the operator
basis is now freely and finitely generated by the set {Φi, ∂Φi}N

i=1, giving us
the EOM Hilbert series of the form

HEOM
N (ϕ,D) =

N∏︂
i=1

1
(1− ϕi)(1−Dϕi)

.

(3) Only IBP relations. Relations between drn,free operators of the type ∂nΦr are
formed from drn−1,free operators of the type ∂n−1Φr (with one less derivative)
by performing a total derivative. One particular example in the case of only
one field flavor would be

0 ∼ ∂
(︂
(∂n−1Φ)Φr−1

)︂
= (∂nΦ)Φr−1 + (r − 1)(∂n−1Φ)(∂Φ)Φr−2.

Due to linearity of the derivative, we obtain a linearly independent set of
relations from a linearly independent set of operators, with only exception
being the trivial constant operator, which does not generate any relation.
Therefore, we have (δij denotes the Kronecker delta and dfree

rn ≡ 0 for n < 0)

dIBP
rn =

⎧⎨⎩dfree
rn − dfree

rn−1 r ̸= 0,

δ0n ≡ dfree
0n r = 0.
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A simple reordering of the summation gives us

H IBP
N (ϕ,D) =

∑︂
r

∞∑︂
n=0

dIBP
rn ϕrDn = 1 +

∑︂
r ̸=0

∞∑︂
n=0

(dfree
rn − dfree

rn−1)ϕrDn

= 1 + (1−D)
∑︂
r ̸=0

∞∑︂
n=0

dfree
rn ϕrDn = D + (1−D)H free

N (D, {ϕi}).

Again, the IBP Hilbert series is given by a straightforward modification of
the free Hilbert series as

H IBP
N (ϕ,D) = D + (1−D)

N∏︂
i=1

∞∏︂
n=0

1
1−Dnϕi

.

(4) Both EOM and IBP relations. Interplay of both types of relations makes
this problem harder (and therefore interesting), but it is still possible to find
analytic expression using techniques similar to those we will present in the
following chapters [6]. We do not have the space to cover it here, but it is
advised for the reader to take a look at its solution (mainly Section 4 of [6]),
probably best as a complement to our Chapter 4.

In fact, this was really meant as a training toy model for exploring the simplest
possible but already non-trivial computation of an operator basis including
both EOM and IBP relations.

A natural question arises:

How do we obtain the Hilbert series in a more general setting, for an arbitrary
space-time dimension and field content with possible internal symmetries?

So far we have only encountered the case with d = 1 and no internal symmetries.
Only in this dimension the Lorentz group is trivial and the application of the
derivatives is always unambiguous. From now on, we always assume d ≥ 2, where
each derivative carries an index with non-trivial transformation properties.

To construct a Lorentz invariant operator, we are forced to somehow contract all
the indices, and usually there are multiple possibilities. A similar thing goes for
internal symmetries, both additions bringing substantial complexity. It suffices to
say that it is far from obvious how to generalize the discussion in 2.15.

Nonetheless, the toy model in 2.15 has proved to be full of inspiring lessons, mainly
case (4), paving the way for vast generalization developed by the same authors

— Henning, Lu, Melia, and Murayama [1]. In the next chapter, we will start the
preparatory work essential for a systematic treatment of our problem.
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3. Representations of Lie Groups
Groups are omnipresent in the realm of mathematics and physics, and so are
manifolds in the context of field theories. It is impossible to go even past the proper
formulation of the physical theory without specifying transformation properties of
the present particle fields. Since everything plays out on a smooth manifold, the
corresponding symmetry groups are themselves often smooth manifolds.

Groups and their representations will precisely turn out to be the tools we need
to systematically count the Hilbert series. The idea is that by continuously being
aware of the transformation properties — representations — of different operators,
we can automatically rule out operators that generate GDC conditions, and also
project out the number of only invariant operators. Furthermore, we will learn to
project out the number of operators corresponding to any representation, which
will be crucial for addressing IBP relations.

In Section 3.1 we will introduce the notion of Lie groups as well as present
particular examples we are interested in. Moreover, by studying their differential
structure, we will be able to show unique existence of the invariant Haar integral
on compact Lie groups, on which much of the following results build upon.

In Section 3.2 we will start the study of group representations. By borrowing con-
cepts from linear algebra we will be able to obtain a wide range of representations
describing various transformation properties of different objects.

In Section 3.3 we will dive deeper into representation theory with the goal
to systematically examine the structure of representations. We will introduce
the notion of irreducible representations and show that any finite-dimensional
representation of a compact Lie group decomposes to such atomic pieces.

In Section 3.4 we will finish our endeavor to find the multiplicities of irreducible
representations in any given representation by deriving the projection formula. It
works by assigning characters to corresponding representations and integrating over
the group, utilizing the fact that irreducible characters turn out to be orthonormal.

In Section 3.5 we will extend our knowledge to graded representations, which
enable us to work with a countable number of representations in parallel, since
they are in direct relation with generating functions.

In Section 3.6 we will once again return to a direct study of compact Lie groups.
We will introduce numerous important concepts, such as maximal torus and roots
of a group, ultimately leading to the Weyl integration formula, which provides us
with explicit means of performing the integral in the projection formula.

We only introduce important notions from group and representation theory, which
shall prove useful for our problem. This chapter is mainly based on the beautiful
works of Bröcker and Dieck [8], Fulton and Harris [9], and Sepanski [10].
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3.1 Compact Lie groups
Lie groups are essentially a harmonious combination of the algebraic structure
of a group and the analytic and geometric structure of a differentiable manifold.
They underlie the fundamental theory describing continuous transformations.

Definition 3.1 (Lie group). A Lie group G is a group that is also a differentiable
manifold, for which the group multiplication m : G×G→ G is a smooth map.

Remark 3.2. It can be shown that the definition of a Lie group already implies
also the smoothness of the inverse map ι : G→ G, g ↦→ g−1 [8].

Remark 3.3. We will use e or 1 to denote the identity of a group G. For ease of
notation we write just gh instead of m(g; h) for any g, h ∈ G.

Some Lie groups can have similar structures. To get a grasp of what it means, we
introduce the elementary notion of homomorphisms.

Definition 3.4 (Homomorphism of Lie groups). A homomorphism of Lie groups
is a smooth map ϕ : G→ H between two Lie groups G and H, such that the
group operation is preserved, that is

ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G,

where the multiplication on the left side is in G and on the right side in H.

Remark 3.5. There always exists a trivial homomorphism, which maps every
element of G to the identity element of H. If homomorphism between groups
is non-trivial, it is an indication they share certain similarities. A bijective
homomorphism is called an isomorphism, the corresponding groups are then called
isomorphic (G ∼= H), which means they are identical up to differences in the
notation of their elements.

Example 3.6. Every finite-dimensional vector space V with its additive group
structure is a Lie group. By any choice of basis it is isomorphic to Rdim V .

We can construct new groups by a simple combination of already known ones.

Definition 3.7 (Direct product of Lie groups). Let G and H be Lie groups. Then
their direct product G ≡ G×H is also a Lie group, where we understand it
both as a direct product of their manifold structures and their group structures.
Namely, the group multiplication of g1, g2 ∈ G is defined component-wise via

g1g2 ≡ (g1; h1)(g2; h2) ≡ (g1g2; h1h2), where g1, g2 ∈ G and h1, h2 ∈ H.

Example 3.8. The torus Tn (n ∈ N) defined by

Tn ≡ Rn/Zn = (R/Z)n ∼= (S1)n ≡
n⏟ ⏞⏞ ⏟

S1 × · · · × S1

11



is a Lie group, where the circle group S1 ≡ {z ∈ C | |z| = 1} is the unit circle in C
viewed as a multiplicative subgroup of C× ≡ C \ {0}. The isomorphism R/Z ∼= S1

is given by the map R/Z→ S1 : t ↦→ e2π̊ıt.

Figure 3.9: Illustration of alternative isomorphic definitions of the torus T2.

Example 3.10 (General linear groups). Let V be a finite-dimensional vector space
over R or C. By End(V ) we denote the space of endomorphisms of V , that is the
vector space of linear maps from V to itself. Very important is the set GL(V ) ⊂
End(V ) of automorphisms (invertible endomorphisms) of V . Equivalently, we
have

GL(V ) = {A ∈ End(V ) | det A ̸= 0}.
The determinant is a continuous function, thus GL(V ) is an open subset of End(V ).
It is easy to see that GL(V ) has the structure of a differentiable manifold and in
coordinates the group operation is the matrix multiplication, which is smooth.
GL(V ) is therefore a Lie group. In particular, we have the General Linear groups

GL(n,R) ≡ GLR(Rn) and GL(n,C) ≡ GLC(Cn),

which are canonically isomorphic to the groups of invertible n×n matrices over R
and C, respectively. Thus, we can think of GL(n,R), GL(n,C), and their subgroups
(see Example 3.11) as matrix groups with the operation of matrix multiplication.

Example 3.11 (Special Orthogonal and Unitary groups). We will be mostly interested
in compact Lie groups, which will represent our (Euclidean) Lorentz and gauge
groups. Since a closed subgroup of a Lie group inherits the Lie group structure,
we obtain the following compact classical groups [8]:

(a) The Orthogonal O(n) and the Special Orthogonal SO(n) groups defined by

O(n) ≡ {g ∈ GL(n,R) | g⊺g = 1}, SO(n) ≡ {g ∈ O(n) | det g = 1},

where g⊺ denotes the transpose of g. Group O(n) splits into two connected
components with the values ±1 of the determinant, one being SO(n).

(b) The Unitary U(n) and the Special Unitary SU(n) groups defined by

U(n) ≡
{︂
g ∈ GL(n,C)

⃓⃓⃓
g+g = 1

}︂
, SU(n) ≡ {g ∈ U(n) | det g = 1},

where g+ ≡ g⊺ denotes the conjugate transpose of g. It can be shown that
both U(n) and SU(n) are connected.
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These groups preserve the standard inner products on Rn and Cn, particularly the
norms. Thus, it can be seen they are compact, since they are closed and bounded
in the finite-dimensional vector spaces End(Rn) and End(Cn).

Remark 3.12 (Symplectic groups). There is one other compact classical Lie group
family, namely the symplectic groups

Sp(n) ≡ {g ∈ GL(n,H) | g∗g = 1},

where H denotes the quaternions and g∗ denotes the quaternionic conjugate
transpose of g. Since understanding a noncommutative division algebra H takes
some work and we will not need the symplectic groups, we refer the interested
reader to practically any book on the subject of Lie groups [8–10].

Remark 3.13. More generally, classical groups are defined as automorphism groups
that preserve a bilinear or sesquilinear form on finite-dimensional vector spaces
over R, C, or H. For example, O(n) is defined as a subgroup of GL(n,R) preserving
some symmetric positive-definite bilinear form Q : Rn × Rn → R, that is

Q(gv, gw) = Q(v, w) for any g ∈ O(n) and v, w ∈ Rn.

Since we can always bring such form Q by a change of basis to the standard scalar
product on Rn, we precisely obtain the definition in (a) of Example 3.11.

What can we reveal about the Lie groups (namely the compact ones) by studying
the interplay of their algebraic and analytic structures? Perhaps not so surprisingly,
many strong results are just waiting to be uncovered. We will start by introducing
the tensor fields which are adjusted to the group structure of a Lie group.

Definition 3.14 (Left translations, left-invariant fields). Let G be a Lie group.
The left translation by g ∈ G is a diffeomorphism Lg : G → G defined by
Lgh ≡ gh for any h ∈ G. The inverse is given by L−1

g = Lg−1 .

A tensor field (section of the tensor bundle) on G is called left-invariant if
it is invariant under the induced action of left translations. That is, a left
invariant tensor field A ∈ Sect T p

q G satisfies

Lg∗A = A for every g ∈ G,

where Lg∗ denotes the pushforward by Lg.

Remark 3.15. We implicitly used the fact that Lg is a diffeomorphism, thus we
can pushforward the whole vector field to obtain another vector field. We also
extend the definition of pushforward to forms by Lg∗ ≡ (L∗

g)−1 = L∗
g−1 .

Remark 3.16. Analogously we can define the right translations by Rgh ≡ hg for
any g, h ∈ G, and the corresponding right-invariant tensor fields.

It follows that left-invariant vector (and more generally tensor) fields are uniquely
given by their value at the identity.
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Proposition 3.17 (Left-invariant lift). The tensor space Te
p
qG at the identity

of a Lie group G is canonically isomorphic to the space of the left-invariant
tensor fields SectL T p

q G ⊂ Sect T p
q G on G. We denote this isomorphism by

ℓ• : Te
p
qG→ SectL T p

q G

a ↦→ A ≡ ℓa,

and it is defined by ℓa|g ≡ Lg∗a.

Proof. To any left-invariant tensor field A we can assign uniquely a tensor A|e
at the identity, which follows from (we use the left-invariance of A)

A|g = (Lg∗A)|g ≡ Lg∗(A|e) ≡ ℓA|e|g =⇒ A = ℓA|e .

The map A|e
ℓ↦−→ A is evidently one-to-one and linear, thus an isomorphism.

Remark 3.18. Since the space of top-dimensional forms Λd
eG at the identity of G

is one-dimensional, and the pushforward of a nonzero form by a diffeomorphism Lg

leads to a nonzero form, we obtain a unique (up to multiplication by a constant)
left-invariant volume form on G. Specially, every Lie group is orientable.

Now we restrict ourselves to the case of a compact Lie group G, where it is possible
to perform integration over the whole G without any problem. We will show there
actually exists a unique normalized invariant Haar integral.

Theorem 3.19 (Invariant Haar integral). Let G be a compact Lie group and
h ∈ G be any element of G. Denote by C(G) the vector space of continuous
real-valued functions on G. Then there exists the invariant Haar integral

ˆ
: C(G)→ R

f ↦→
ˆ

f ≡
ˆ

G

f(g) dg ,

and is uniquely determined by the following properties:

(a) It is linear, monotone, and normalized, that is
ˆ

G

dg = 1.

(b) It is left invariant, that is
ˆ

G

f(hg) dg ≡
ˆ

G

f ◦ Lh(g) dg =
ˆ

G

f(g) dg.

Proof. Existence follows from Remark 3.18, giving us a volume form ω on G,
with respect to which we define the integral. Property (a) is then satisfied by
properly rescaling the ω. Property (b) follows from the left-invariance of ω byˆ

G

f◦Lh dg ≡
ˆ

G

(f◦Lh)ω =
ˆ

G

(f◦Lh)L∗
hω =

ˆ
G

L∗
h(fω) =

ˆ
LhG≡G

fω ≡
ˆ

G

f dg ,

where we used that Lh is orientation preserving (since L∗
h preserves ω).
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We will prove uniqueness by comparing all left-invariant integrals with a single
right-invariant integral (can be constructed similarly as the left-invariant one).
Let f ↦→

´
G

f(g) dg be any integral with the properties from the definition, and
f ↦→

´
G

f(g)δg is a given right-invariant normalized integral, that is
ˆ

G

δg = 1 and
ˆ

G

f(gh)δg =
ˆ

G

f(g)δg.

Then for any f ∈ C(G) by use of left-invariance/right-invariance, normalization,
and Fubini’s theorem to exchange the order of integration, we obtain

ˆ
G

f(g) dg =
ˆ

G

(︄ˆ
G

f( g) dg

)︄
δh =

ˆ
G

(︄ˆ
G

f(hg) dg

)︄
δh

=
ˆ

G

(︄ˆ
G

f(hg)δh

)︄
dg =

ˆ
G

(︄ˆ
G

f(h )δh

)︄
dg =

ˆ
G

f(h)δh.

This is sufficient to establish uniqueness.

Corollary 3.20 (Properies of invariant Haar integral). Let G be a compact Lie
group, h ∈ G be any element of G, and ϕ be any automorphism ϕ : G→ G
(isomorphism from G to itself). Then the invariant Haar integral satisfies
ˆ

G

f(g) dg
(1)=

ˆ
G

f(hg) dg
(2)=

ˆ
G

f(gh) dg
(3)=

ˆ
G

f(g−1) dg
(4)=

ˆ
G

f ◦ ϕ(g) dg .

Proof. Suppose φ : G→ G is a diffeomorphism, then the map f ↦→
´

G
f ◦φ(g) dg

is clearly a normalized integral. If it happens to also be left-invariant, that is´
G

f ◦ Lh ◦ φ(g) dg =
´

G
f ◦ φ(g) dg, from uniqueness (see Theorem 3.19) it must

be that
´

G
f ◦ φ(g) dg =

´
G

f(g) dg. We apply this idea (⋆) to prove:

(1) Follows directly from the definition of the invariant Haar integral.

(2) Choose φ(g) ≡ Rh(g) ≡ gh and any k ∈ G. Left-invariance follows from
ˆ

G

f ◦ Lk ◦Rh(g) dg =
ˆ

G

f(kgh) dg =
ˆ

G

f ◦Rh(kg) dg
(1)=

ˆ
G

f ◦Rh(g) dg .

(3) Choose φ(g) ≡ ι(g) ≡ g−1. We can use the already proved (2) to show
ˆ

G

f ◦ Lh ◦ ι(g) dg =
ˆ

G

f(hg−1) dg =
ˆ

G

f ◦ ι(gh−1) dg
(2)=

ˆ
G

f ◦ ι(g) dg .

(4) Choose φ(g) ≡ ϕ(g). By homomorphism of ϕ (see Definition 3.4) we have
ˆ

G

f ◦Lh◦ϕ(g) dg =
ˆ

G

f(hϕ(g)) dg =
ˆ

G

f ◦ϕ(ϕ−1(h)g) dg
(1)=

ˆ
G

f ◦ϕ(g) dg .

Application of the idea (⋆) finishes the proof.

Remark 3.21 (Haar measure). We sometimes refer to dg figuring in the invariant
Haar integral as the (invariant) Haar measure.
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Remark 3.22. Every finite group is actually a zero-dimensional compact Lie group
(with discrete topology). Everything what we will present about representations
applies to finite groups with the appropriate transition from integrals to sums.
Historically, it was knowledge about finite groups that was extended to the special
case of compact Lie groups by existence of the Haar measure.

The importance of the invariant Haar integral on compact Lie groups can not
be understated. We will fundamentally use it in Sections 3.3 and 3.4 to obtain
invariant objects by averaging over the group.

For now, we leave the direct analysis of the group structure, as we will approach
them somewhat indirectly through their representations. We will return once
more to their differential geometry in Section 3.6.

3.2 Representations
Groups themselves can be pretty abstract entities. However, their properties can
be probed by examining their action on certain simple structures we understand
very well, in our case vector spaces. This is the subject of representation theory,
which in a group structure preserving way assigns to every group element a linear
transformation of a vector space. In essence, it is able to reduce some problems in
abstract algebra to problems in linear algebra.

Definition 3.23 (Representation). A representation of a Lie group G on a
finite-dimensional complex vector space V is a Lie group homomorphism
ρ : G→ GL(V ). The dimension of the representation V is dim V ≡ dimC V .

Remark 3.24. When there is little ambiguity about the map ρ, we call V itself a
representation of G. In that case we say that g has an action on V . We often write
g|V for ρ(g) and directly gv for ρ(g)(v), where v ∈ V . For a visual representation
of the notion of group representations see Figure 3.27.

Remark 3.25. We could extend the definition to infinite-dimensional vector spaces
or to vector spaces over different fields F, for example R. Since we will not find
much use for such generalizations, and sometimes we will distinctly use finite-
dimensionality and properties of complex numbers, we assume finite-dimensional
representations over C unless stated differently.

Example 3.26. Some elementary representations appear automatically:

(a) Trivial representation — every group element is represented by an identity
operator on any given vector space V . Although this does not seem exciting
at first sight, we are frequently interested in objects which are invariant under
the action of the group.

(b) Standard representation — the matrix groups GL(n,R), GL(n,C), and their
subgroups (see Examples 3.10 and 3.11) are canonically represented by matri-
ces on the corresponding complex vector space Cn (we understand R ⊂ C).
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Figure 3.27: Illustration of a representation ρ of group G on vector space V . A group element
g ∈ G is represented by a linear operator ρ(g) ∈ GL(V ), in particular transforming
a vector v ∈ V to the vector v′ ≡ ρ(g)(v) ∈ V .

To enlarge our collection of representations, we will borrow some concepts from
linear algebra, which allow us to build more elaborate representations out of
known simpler ones. Typical and the most basic constructions are the direct sum
and the tensor product of vector spaces.

Definition 3.28 (Direct sum and tensor product of representations). Let V and
W be representations of a group G. Then the direct sum V ⊕W and the
tensor product V ⊗ W are representations with the actions of any g ∈ G
defined through relations

g(v ⊕w) ≡ gv ⊕ gw, g(v ⊗w) ≡ gv ⊗ gw,

for any v ∈ V and w ∈ W .

We can also induce representation of V on the dual space V ∗ ≡ Hom(V,C) of linear
functionals on V by respecting the duality ⟨α, v⟩ ≡ α(v), that is by requiring
⟨gα, gv⟩ ≡ ⟨ρ∗(g)(α), ρ(g)(v)⟩ = ⟨α, v⟩ for all g ∈ G, α ∈ V ∗ and v ∈ V .

Definition 3.29 (Dual representation). Let V be a representation of a group
G. Then the dual representation ρ∗ : G→ GL(V ∗) is defined by

ρ∗(g) = ρ(g−1)⊺ for any g ∈ G.

Now that we have already defined the dual representation and the tensor product
of representations, we can similarly realize a representation on Hom(V, W ), the
space of linear maps between vector spaces V and W (which themselves are
representations), motivated by the canonical isomorphism Hom(V, W ) ∼= V ∗ ⊗W
for finite-dimensional V and W .
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Definition 3.30 (Hom(V, W ) representation). Let V and W be representations
of a group G. Then Hom(V, W ) ∼= V ∗⊗W is a representation with the action
of any g ∈ G defined through the relation

(gφ)(v) ≡ gφ(g−1v) for any φ ∈ Hom(V, W ), v ∈ V.

It is often interesting to study maps between representations, which preserve their
structure (in a similar sense as homomorphisms preserve group structure).

Definition 3.31 (G-map, HomG(V, W ), equivalent representations). A G-map
(G-linear map) is a linear map φ : V → W between representations V and W
of a group G, such that it preserves the group representation structure, that is

φ(gv) = gφ(v) for all g ∈ G, v ∈ V .

We denote by HomG(V, W ) the space of all G-linear maps between V and W .

Representations V and W are equivalent (V ∼= W ) if there exists a bijective
G-map between them, which means they are identical up to a change of basis.

Remark 3.32. Comparing Definitions 3.30 and 3.31 we observe that HomG(V, W )
is just a subspace of Hom(V, W ) that transforms trivially under the action of G.

Remark 3.33. Previous definitions are equivalent to the statement, that the
following diagrams are commutative for every g ∈ G:

V C

V C

φ

g 1

φ

(a) V ∗ ≡ Hom(V,C)

V W

V W

φ

g g

gφ

(b) Hom(V, W )

V W

V W

φ

g g

φ

(c) HomG(V, W )

Figure 3.34: Commutative diagrams corresponding to Definitions 3.29, 3.30 and 3.31.

3.3 Complete reducibility and Schur’s Lemma
We have already encountered numerous possibilities, how we can construct other
representations from already known ones, most simply by taking the direct sum.
Steps in the other direction would be of similar if not greater interest. If we
were able to systematically decompose any representation to its smallest pieces,
understanding just them would be enough, leading to a major simplification.

In order to decompose a given representation V , there necessarily must exist some
proper subspace of V that is somehow closed under the action of a group. We
can create another representation by restricting the group on such a subspace.

Definition 3.35 (Subrepresentation). A vector subspace W of a representation
V of a group G is called G-invariant or a subrepresentation if gw ∈ W for
every g ∈ G and w ∈ W . Thus, W ≤ V itself is a representation of G.
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Now we define “atomic” representations, in which the action of the group already
mixes up the whole space, therefore they can not be decomposed any further.

Definition 3.36 (Irreducible representation). A nonzero representation V is
called irreducible if the only subrepresentations are the zero space {0} and
the whole V . Otherwise, V is called reducible.

It would be ideal if any representation could be decomposed into irreducible
representations. In the case of general Lie groups, this is not the case. However, as
we will show later, representations of compact Lie groups satisfy this property.

Definition 3.37 (Complete reducibility). A representation V of a group G is
called completely reducible if it is a direct sum of irreducible representations.

But first, to have a glimpse of how useful is to work with irreducible representations,
we present an essential tool in Representation Theory as a whole.

Theorem 3.38 (Schur’s lemma). Let V and W be irreducible representations
of a group G, and φ : V → W be a G-map between them. Then the following
results hold:

(1) Either φ is an isomorphism, or φ = 0.

(2) If V = W , then φ = λ1 for some λ ∈ C.

Proof. Subspaces Ker φ and Im φ of a G-map φ are G-invariant, which follows
directly from Definition 3.31. Claim (1) then follows from irreducibility of V and
W , because only possibilities are that either Ker φ = {0} and Im φ = W , or that
Ker φ = V and Im φ = {0}.

Since V is a finite-dimensional vector space over the algebraically closed field C,
there exists a solution λ ∈ C of the equation det(φ − λ1) = 0. Claim (2) then
follows from (1) applied to a G-map φ−λ1, giving us φ−λ1 = 0 =⇒ φ = λ1.

Corollary 3.39 (Dimension of HomG-space between irreducible representations).
Let V and W be two irreducible representations of a group G. Then

dim HomG(V, W ) =
{︄

1 if V ∼= W,

0 if V ≉ W.

Proof. From the claim (1) of Theorem 3.38 follows, that there exists a nonzero
φ ∈ HomG(V, W ) if and only if V ∼= W .

In the case V ∼= W we fix a bijective φ0 ∈ HomG(V, W ). If also φ ∈ HomG(V, W ),
then φ ◦ φ−1

0 ∈ HomG(V, V ), and from the claim (2) of Theorem 3.38 follows
φ ◦ φ−1

0 = λ1 for some λ ∈ C =⇒ HomG(V, W ) = Cφ0.
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Now we embark on the journey of proving the complete reducibility of compact
Lie group representations. After that, Theorem 3.38 and mainly Corollary 3.39
will result in some far-reaching consequences.

We will exploit the existence of the invariant Haar integral to construct an inner
product compatible with the structure of the group. This will enable us to
decompose any reducible representation to its proper subrepresentation and the
corresponding orthogonal complement, which will also be its subrepresentation.

Definition 3.40 (Unitary representation). A representation V of a group G
is called unitary if there exists a G-invariant sesquilinear inner product
(•, •) : V × V → C, that is

(gv, gw) = (v, w) for any g ∈ G and v, w ∈ V.

Remark 3.41. Any g ∈ G is thus represented on any unitary representation V by
a unitary operator g|V . So g|V is also a normal operator, hence diagonalizable.

Theorem 3.42 (Unitarity of compact Lie group representations).

Let V be a representation of a compact Lie group G. Then V is unitary.

Proof. Let ⟨•, •⟩ be any inner product. We will average it over the whole G using
the invariant Haar measure dg (see Theorem 3.19). Since integration preserves
sesquilinearity and positive-definitness, we can define the inner product

(•, •) ≡
ˆ

G

⟨g•, g•⟩ dg .

G-invariance of (•, •) follows from Corollary 3.20 applied to the function defined
by f(g) ≡ ⟨gv, gw⟩ for any fixed v, w ∈ V , simply by the calculation

(hv, hw) =
ˆ

G

⟨ghv, ghw⟩ dg =
ˆ

G

⟨gv, gw⟩ dg ≡ (v, w)

for any h ∈ G.

Corollary 3.43 (Complete reducibility of compact Lie group representations).
Every representation V of a compact Lie group G is completely reducible.

Proof. Suppose V is reducible with W ≤ V being its proper subrepresentation.
From Theorem 3.42 we obtain a G-invariant inner product (•, •), thus we have
the decomposition V = W ⊕W ⊥, where the orthogonal complement W ⊥ of W is
also a proper subrepresentation of V , since

(gv, w) = (v, g−1w) = 0 for any g ∈ G, v ∈ W ⊥, w ∈ W.

We finish the proof by induction and finite dimensionality.
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Therefore, to study any finite-dimensional representation of a compact Lie group
it is enough to understand the set of irreducible representations, and to know how
to compute multiplicities in its decomposition.

Corollary 3.44 (Decomposition of compact Lie group representations). Let V be
a representation of a compact Lie group G. Then there exists a decomposition

V =
k⨁︂

i=1
V ⊕ai

i ≡ V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k ,

where Vi are distinct irreducible representations with multiplicities ai given
uniquely by

ai = dim HomG(Vi, V ).

Proof. Existence follows from Corollary 3.43. Multiplicities are calculated as

dim HomG(Vi, V ) = dim HomG

⎛⎝Vi,
k⨁︂

j=1
V

⊕aj

j

⎞⎠ = dim
⎡⎣ k⨁︂

j=1
HomG

(︂
Vi, V

⊕aj

j

)︂⎤⎦
=

k∑︂
j=1

dim HomG

(︂
Vi, V

⊕aj

j

)︂
=

k∑︂
j=1

aj dim HomG(Vi, Vj)⏞ ⏟⏟ ⏞
δij from Corollary 3.39

= ai,

where we have used the isomorphism (valid for arbitrary representations U, V, W )
HomG(U, V ⊕W ) ∼= HomG(U, V )⊕ HomG(U, W )

following from the basic linear algebra equivalence
U∗ ⊗ (V ⊕W ) ∼= (U∗ ⊗ V )⊕ (U∗ ⊗W ).

We will show one last consequence of Theorem 3.42, namely that dual represen-
tations of unitary representations are actually isomorphic to so-called conjugate
representations, where multiplication by scalars from C is always conjugated.

Corollary 3.45 (Equivalence of V and V ∗). Let V be a representation of
a compact Lie group G. Then we have an equivalence of representations
V ∼= V ∗, where the conjugate representation V has the same underlying
additive structure as V , but is equipped with a new scalar multiplication
structure ·′ : C× V → V given by z ·′ v = zv.

Proof. Define a bijective linear map φ : V → V ∗ by φv ≡ (v, •) for any v ∈ V ,
where (•, •) is the G-invariant inner product from Theorem 3.42. To see that φ is
a G-map, and therefore realizes the equivalence V ∼= V ∗, we calculate

g(φv) = (v, g−1•) = (gv, •) ≡ φ(gv),
where the first equality follows from Definition 3.29 of the action of G on V ∗, and
the second from G-invariance of the inner product.

Remark 3.46. From the definition of V we have g|V ≡ g|V for any g ∈ G.

21



3.4 Characters and the Projection formula
We would like to explicitly compute the factors in the decomposition of a repre-
sentation into irreducible ones. The first step will be finding an explicit formula
for the projection onto the direct sum of trivial factors in the decomposition. To
start, we introduce a notation for this trivial factor.

Definition 3.47 (Fixed point set). Let V be a representation of a group G.
Then the fixed point set is a subrepresentation of V defined by

V G ≡ {v ∈ V | gv = v for all g ∈ G}.

We again exploit the idea of averaging over G already used in the proof of
Theorem 3.42 to obtain a G-invariant projection.

Proposition 3.48 (Projection onto V G). Let V be a representation of a compact
Lie group G. Then the map p ∈ End(V ) defined using the vector integration
for any v ∈ V by

p(v) ≡
ˆ

G

gv dg

is a projection of V onto V G.

Proof. Using invariance of dg for any h ∈ G we have

hp(v) ≡
ˆ

G

hgv dg =
ˆ

G

gv dg ≡ p(v),

so Im p ⊂ V G. Conversely, if v ∈ V G, then

p(v) ≡
ˆ

G

gv dg =
ˆ

G

v dg = v

ˆ
G

dg ≡ v,

so V G ⊂ Im p and p = p ◦ p is a projection onto Im p = V G.

Remark 3.49. We can calculate the dimension of V G using a standard property
of projections, that is (we can commute Tr and integration by linearity)

dim V G = Tr(p) ≡ Tr
(︄ˆ

G

g|V dg

)︄
=
ˆ

G

Tr(g|V ) dg

which follows from p|V G = 1V G and a convenient choice of basis adjusted to the
decomposition V = Ker p⊕ Im p = Ker p⊕ V G. For a visual intuition about the
projection map p see Figure 3.50.

The previous remark is a straightforward demonstration, that traces of g|V appear
naturally when one is exploring the structure of representations. This suggests
the fundamental notion of characters, the basis of Character Theory.
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Figure 3.50: Illustration of Proposition 3.48. We imagine group G = SO(2) ∼= S1 and its real
3-dimensional representation V , which decomposes as V = S ⊕ R, S being the
standard representation in the x-y plane, and R being the trivial representation
along the z-axis. As the projection map p averages over the whole group G, the
action of g ∈ G rotates the components of the vector in the x-y plane, thereby
only leaving the component along the z-direction, which is precisely vG ∈ V G.

Definition 3.51 (Character). Let V be a representation of a group G. Then
its character χ

V
: G→ C is a function on G defined by

χ
V

(g) = Tr(g|V ) ≡ TrV (g) for any g ∈ G.

Remark 3.52. Note that χ
V

(e) ≡ Tr(1V ) = dim V .

Characters are a condensed form of information about the representation. For
finite groups and compact Lie groups they give us a unique (up to isomorphism)
characterization of their finite-dimensional representations, while for general
Lie groups they still encode very important properties. Before we state the
fundamental result concerning the calculation of multiplicities in decompositions,
we first find out some useful properties of characters.

Proposition 3.53 (Properties of characters). Let V and W be representations
of a compact Lie group G. Then the following properties hold:

(1) Characters are class functions, meaning they are invariant under the
conjugation map, that is χ

V
(g) = χ

V
(hgh−1) for any g, h ∈ G.

(2) If V ∼= W , then χ
V

= χ
W

. Specifically, χ
V ∗ = χ

V
= χ

V
.

(3) The character of a direct sum V ⊕W is given by χ
V ⊕W

= χ
V

+ χ
W

.

(4) The character of a tensor product V ⊗W is given by χ
V ⊗W

= χ
V

χ
W

.

(5) The character of the dual space V ∗ satisfies the relation χ
V ∗(g) = χ

V
(g−1).

Proof. We fix any g, h ∈ G. Claim (1) follows from the cyclic property of Tr.

Action on equivalent representations (see Definition 3.31) differs just by a change
of basis, with respect to which the trace is invariant. The second part of claim
(2) then follows from Corollary 3.45.
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Actions of g are automatically diagonalizable on V and W (see remark 3.41).
Denote by {αi} and {βj} the eigenvalues of the action g on V and W , respectively.
Using Definition 3.28 we obtain that {αi} ∪ {βj} and {αiβj} are eigenvalues on
V ⊕W and V ⊗W , from which the claims (3) and (4) follow.

Claim (5) follows from Definition 3.29 and the fact that Tr(A) = Tr(A⊺).

We are now fully prepared to state the main result of this section.

Corollary 3.54 (Projection formula for the multiplicity). The multiplicity ai of
the irreducible representation Vi in a decomposition of a representation V of
a group G is given by

ai
(1)= dim HomG(Vi, V ) (2)=

ˆ
G

χ
Vi

(g−1) χ
V

(g) dg
(3)=

ˆ
G

χ
Vi

(g) χ
V

(g) dg .

Proof. Equality (1) was already proved in Corollary 3.44. Equalities (2) and (3)
follow from Remark 3.49 applied to the representation Hom(Vi, V ) by noticing
HomG(Vi, V ) ≡ Hom(Vi, V )G (see Remark 3.32), and applying Proposition 3.53
to the equivalence Hom(V, W ) ∼= V ∗ ⊗W ∼= V ⊗W , that is

χHom(V,W )(g) = χ
V ∗⊗W

(g) = χ
V

(g−1) χ
W

(g) = χ
V ⊗W

(g) = χ
V

(g) χ
W

(g).

Remark 3.55. Remark 3.49 is a special case of Corollary 3.54, where we take the
projection onto the trivial representation Vi ≡ C, so g|C ≡ 1 =⇒ χ

Vi
(g) = 1.

Remark 3.56. Irreducible characters (characters of the irreducible representations)
turn out to be orthonormal, which follows from Corollary 3.54 and Corollary 3.39.

Remark 3.57 (Quick summary). In the last two sections we learned that every
finite-dimensional representation of a compact Lie group is completely reducible
(Corollary 3.43). The decomposition is given uniquely (up to isomorphism) by the
multiplicities of corresponding irreducible representations (Corollary 3.44), which
can be calculated using just the irreducible characters (Corollary 3.54). Thus,
characters give us a unique characterization up to isomorphism.

3.5 Graded representations and characters
We learned a fair amount about the finite-dimensional representations, enough to
be capable of extracting interesting information about the operators by assigning
them appropriate representations and characters. Our goal is to find the Hilbert
series H(ϕ,D) encoding information about the operator basis containing an
infinite number of operators.

It is hopeless to work with one operator representation at a time, not only
efficiency-wise, but also because we have non-trivial IBP relations between them.
Thankfully, we can organize them to so-called graded representations and calculate
the corresponding characters all at once.
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We start by realizing that the tensor product of representations V ⊗W corresponds
to the representation of two distinguishable particle fields, one transforming under
V , the other under W . Thus, if we want n distinguishable copies of the same
particle field, we just work with the nth tensor power.

Definition 3.58 (Tensor power of representation). Let V be a representation of
a group G. Then the nth tensor power V ⊗n is (by convention V ⊗0 ≡ C)

V ⊗n ≡ V ⊗ · · · ⊗ V⏞ ⏟⏟ ⏞
n

for n ∈ N.

But all known physical particles are in fact indistinguishable. Exchange of two
particles cannot change any physical observable, so the wave-function can only
change by a phase. Two subsequent exchanges of the same pair is an identity
operation (ignoring peculiarities such as anyons), so the change of phase can only
be by a factor of ±, corresponding to the bosonic/fermionic particles, respectively.

Since the action of the group on V ⊗n commutes with the permutation of the
factors, a fully symmetric subspace Sn(V ) and a fully antisymmetric subspace⋀︂n(V ) are actually subrepresentations of V ⊗n. In the following, the symmetric
product symbol ⊗sym is just omitted, and the exterior product is denoted as usual
by the wedge ∧.

Definition 3.59 (Symmetric and exterior power of representation). Let V be
a representation of a group G. Then the nth symmetric power Sn(V ) and
the nth exterior power

⋀︂n(V ) are subrepresentations of the nth tensor power
V ⊗n, with actions of any g ∈ G given by

g(v1 · · ·vn) ≡ (gv1) · · · (gvn), g(v1 ∧ · · · ∧ vn) ≡ (gv1) ∧ · · · ∧ (gvn),

for any {vi}n
i=1 ⊂ V . By convention let S0(V ) =

⋀︂0(V ) ≡ C.

Remark 3.60. This construction is further generalized by Schur functors Sλ [11].

We can extend the notions of tensor, symmetric, and exterior power to construct
corresponding algebras. But first, we define the notion of graded representations.

Definition 3.61 (Graded representation). A representation V of a group G
is called a graded representation (possibly infinite-dimensional) if it has the
extra structure of a grading, meaning it has a decomposition of the form

V ≡
∞⨁︂

n=0
tnVn,

where each Vn is a finite-dimensional representation of G. For now, the formal
factors tn are just labels helping us to distinguish different graded pieces
(useful when combining different graded representations together).
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Remark 3.62. We defined Vn to be finite-dimensional, but we would often like
them to be themselves graded representations. Standard reordering of summation
makes this requirement reasonable in the sense of Definition 3.61

V ≡
∞⨁︂

n=0
tnVn ≡

∞⨁︂
n=0

tn

(︄ ∞⨁︂
r=0

qrWn,r

)︄
=

∞⨁︂
n=0

∞⨁︂
r=0

tnqrWn,r =
∞⨁︂

k=0

Uk⏟ ⏞⏞ ⏟⎛⎝ ⨁︂
n+r=k

tnqrWn,r

⎞⎠,

where the representations Wn,r are already finite-dimensional, thus also Uk.
Alternatively, we could extend the definition of graded representations to utilize
grading with multiple labels right from the start.

Natural examples of graded representations arise from algebra by considering the
tensor algebra and its quotients, the symmetric and the exterior algebra.

Definition 3.63 (Tensor, symmetric, and exterior graded representations). Let
V be a graded representation of a group G. We define the tensor, symmetric,
and exterior graded representations of V , respectively, as

T (V ) ≡
∞⨁︂

n=0
tnV ⊗n, S(V ) ≡

∞⨁︂
n=0

tnSn(V ),
⋀︂

(V ) ≡
dim V⨁︂
n=0

tn
⋀︂n(V ).

Remark 3.64. We naturally extend the definitions of tensor, symmetric, and
exterior powers (Definitions 3.58 and 3.59) to the case of graded representations.
Similarly as in Remark 3.62, the labels keep track of the appropriate gradings.

Remark 3.65. Note that for a finite-dimensional vector space V the direct sum in
the definition of the exterior graded representation terminates, because there are
no non-trivial n-forms with n > dim V . We still understand

⋀︂
(V ) as a graded

representation, just for n > dim V we have only trivial zero representations.

Remark 3.66. We say that S(V ) and
⋀︂

(V ) are graded subrepresentations of T (V ),
since they are subrepresentations for every graded piece.

If we want to calculate some property of a graded representation, it would be
often useful to know which graded piece contributed by what amount. This is
where the labels will play a fundamental role. Take for example the dimension.

Definition 3.67 (Graded dimension). Let V be a graded representation of a
group G. Then its graded dimension dimt V is a formal series in a complex
parameter t defined by

dimt V ≡
∞∑︂

n=0
tn dim Vn.

Remark 3.68. The use of labels enables us to extract useful information even in
cases, when the ordinary dimension of V would simply be just infinity.

Remark 3.69. The graded dimension of V in the context of Remark 3.62 is a
series with two parameters, greatly helping us to identify the former grading.
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Remark 3.70 (K as a graded representation and H(ϕ,D) as its graded dimension).
The space K ≡ SpanB in Definition 2.3 can be viewed as a graded representation
of the Lorentz (and possibly gauge or some other) group, with the grading given
by Definition 2.8. Every graded piece is composed of trivial representations, one
for each independent operator of a given weight, since all operators in B must be
invariant. By comparing Definition 3.67 with Definition 2.10 we recognize that

dim(ϕ,D)K = H(ϕ,D),

thus the Hilbert series H is the graded dimension of the representation K ≡ SpanB.
That is actually why the coefficients of H(ϕ,D) are denoted as drn, because they
are the dimensions of the corresponding graded pieces.

For efficient manipulations it is essential to extend the definition of characters to
graded representations. Graded characters will play a fundamental role in the
computation of the Hilbert series.

Definition 3.71 (Graded character). Let V be a graded representation of a
group G. Then its graded character χ

V
is a formal series on G in a complex

parameter t defined by

χ
V

(t; g) ≡
∞∑︂

n=0
tnχ

Vn
(g), for any g ∈ G.

Remark 3.72. In particular, we have χ
V

(t; e) = dimt V , see Remark 3.52.

Remark 3.73. Similarly as in Corollary 3.54, we can use the graded character χ
V

to obtain graded multiplicities of any irreducible representation W in V as

dimt aW ≡ dimt HomG(W, V ) ≡
∞∑︂

n=0
tn dim HomG(W, Vn) =

ˆ
G

χ
W

(g) χ
V

(t; g) dg .

Remark 3.74 (Alternative formulation of graded representations). In the light of
Definition 3.71 it appears that the nth graded piece Vn is also being scaled by the
factor of tn (in addition to the ordinary action of g on Vn represented by g|Vn).
Indeed, we can make an alternative formulation of Definition 3.61 which gives a
precise meaning to the labels tn.

First, we extend our group by a scaling group of non-zero complex numbers with
a multiplication operation, that is (see Definition 3.7)

G ≡ GL(C)×G = (C \ {0})×G ≡ C× ×G.

We can now define a set of representations Cn of C×, which still act on C, but
with a modified action of t ∈ C× to t|Cn ≡ tn. This enables us to distinguish
different graded pieces Vn by constructing the graded representation

V ≡
∞⨁︂

n=0
Vn ≡

∞⨁︂
n=0

Cn ⊗ Vn,
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with the action of g = (t; g) ∈ G on v ∈ V defined by

gv ≡ (t; g)
[︄ ∞⨁︂

n=0
vn

]︄
≡

∞⨁︂
n=0

tng|Vnvn, where vn ∈ Cn ⊗ Vn.

Note that Vn ≡ Cn ⊗ Vn is isomorphic to Vn as a complex vector space, but not
as a representation of G. Factors of Cn just charge the graded pieces Vn, granting
them an additional scaling action. Now we can easily see, that we reproduced

χV(g) ≡ Tr(g|V) ≡ Tr
(︄ ∞⨁︂

n=0
tng|Vn

)︄
=

∞∑︂
n=0

tnχ
Vn

(g), for any g = (t; g) ∈ G.

Since most of the time we work only with a single group element g = (t; g) with
possibly multiple scaling parameters t ≡ (t1, . . . , tl), we can think of them as just
being labels, just like in Definition 3.61. Nonetheless, in Corollary 3.77 we will
really need to use the interpretation of scaling introduced in this reformulation.

Graded characters corresponding to graded representations in Definition 3.63 can
be (formally) summed up to quite pretty formulas. It is important, that we are
able to find such closed forms, otherwise the calculations would be intractable.

Proposition 3.75 (Selected graded characters). Let V be a graded representa-
tion of a group G. The following graded characters are given by:

χ
T (V )(t; g) =

∞∑︂
n=0

tnχ
V ⊗n(g) = 1

1− t Tr(g|V ) ≡
1

1− tχ
V

(g) ,

χ
S(V )(t; g) =

∞∑︂
n=0

tnχ
Sn(V )(g) = 1

det(1− tg|V ) ≡
1

detV (1− tg) ,

χ⋀︁(V )(t; g) =
∞∑︂

n=0
tnχ⋀︁n(V )(g) = det(1 + tg|V ) ≡ detV (1 + tg).

We suppressed the label corresponding to the grading of V .

Proof. We perform the proof only for a finite-dimensional V with m ≡ dim V .
The proof would go along the same lines for a graded representation, only χ

V

itself would be a series, and V would have a countable basis.

The first relation follows from Proposition 3.53 applied to V ⊗n, thus
∞∑︂

n=0
tnχ

V ⊗n(g) =
∞∑︂

n=0

[︂
t χ

V
(g)
]︂n

= 1
1− tχ

V
(g) ,

where the last equality is just evaluating the sum of a geometric series.

Fix any g and let {ei}m
i=1 be a basis of V created from eigenvectors of g|V with

corresponding eigenvalues {λi}m
i=1.

For any given n ∈ N0, it is easy to see that a basis of Sn(V ) is{︄
er1

1 · · · erm
m

⃓⃓⃓⃓
⃓ ri ∈ N0,

m∑︂
i=0

ri = n

}︄
,
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where ri determines what power of ei is present in a given basis element. Since
we have (see Definition 3.63)

g(er1
1 · · · erm

m ) = λr1
1 · · ·λrm

m (er1
1 · · · erm

m ),
it follows that (using the multi-index notation λr ≡ ∏︁i λri

i , |r| ≡ ∑︁i ri)
∞∑︂

n=0
tnχ

Sn(V )(g) =
∞∑︂

n=0
tn
∑︂

|r|=n

λr =
∞∑︂

n=0

∑︂
|r|=n

(tλ)r =
∑︂

r

(tλ)r

=
m∏︂

i=1

∞∑︂
ri=0

(tλi)ri =
m∏︂

i=1

1
1− tλi

= 1
det(1− tg|V ) .

For any given n ∈ N0 ∩ [0, m], a basis of
⋀︂n(V ) is{︄

er1
1 ∧ · · · ∧ erm

m

⃓⃓⃓⃓
⃓ ri ∈ {0, 1},

m∑︂
i=0

ri = n

}︄
,

where ri determines whether ei is present or not. Similarly, since we have
g(er1

1 ∧ · · · ∧ erm
m ) = λr1

1 · · ·λrm
m (er1

1 ∧ · · · ∧ erm
m ),

it follows that
m∑︂

n=0
tnχ⋀︁n(V )(g) =

m∑︂
n=0

tn
∑︂

|r|=n
ri∈{0,1}

λr =
m∑︂

n=0

∑︂
|r|=n

ri∈{0,1}

(tλ)r =
∑︂

r
ri∈{0,1}

(tλ)r

=
m∏︂

i=1

1∑︂
ri=0

(tλi)ri =
m∏︂

i=1
(1 + tλi) = det(1 + tg|V ).

Remark 3.76. Summed up graded characters are reminiscent of partition functions
with corresponding statistics found in statistical mechanics, namely the grand-
canonical partition functions for Bose-Einstein/Fermi-Dirac ideal quantum gases

Zg =
∏︂
n

[︂
1∓ e−β(En−µ)

]︂∓
≡
∏︂
n

[︂
1∓ z e−βEn

]︂∓
,

where n indexes over all energy states with the corresponding energies En, and as
usual β ≡ 1

kBT
is the thermodynamic beta. The fugacity z ≡ eβµ plays the role of

the grading label t, and e−βEn plays the role of λi.

There is another way to express graded characters of S(V ) and
⋀︂

(V ), mainly
useful in the case when V itself is a graded representation. It enables us to sidestep
the calculation of the determinant just by knowing its graded character.

Corollary 3.77 (Graded characters as a Plethystic Exponential). Let V be a
graded representation of a group G with label q. The graded characters in
Proposition 3.75 can be also calculated as

χ
S(V )(t, q; g) = exp

(︄ ∞∑︂
r=1

(+1)r+1 tr

r
χ

V
(qr; gr)

)︄
≡ PE

[︂
tχ

V
(q; g)

]︂
,

χ⋀︁(V )(t, q; g) = exp
(︄ ∞∑︂

r=1
(−1)r+1 tr

r
χ

V
(qr; gr)

)︄
≡ PEf

[︂
tχ

V
(q; g)

]︂
.
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Proof. First, we perform manipulations with an arbitrary matrix of the form
1∓ tA, where we use the well-known formula det exp = exp Tr⇒ det = exp Tr ln,
and expansion of ln around 1, to obtain

[det(1∓ tA)]∓ = [exp Tr ln(1∓ tA)]∓

= exp
[︄
∓Tr

(︄ ∞∑︂
r=1

(−1)r+1 (∓tA)r

r

)︄]︄
= exp

(︄ ∞∑︂
r=1

(±1)r+1 tr

r
Tr(Ar)

)︄
.

Since the action of g on Vn is given by qng|Vn (see Remark 3.74), the result follows
from Proposition 3.75 and the calculation

[detV(1∓ tg)]∓ =
[︄ ∞∏︂

n=0
detVn(1∓ tg)

]︄∓

≡
∞∏︂

n=0
[det(1∓ tqng|Vn)]∓ [from before]=======

=
∞∏︂

n=0
exp

(︄ ∞∑︂
r=1

(±1)r+1 tr

r
Tr[(qng|Vn)r]

)︄
= exp

(︄ ∞∑︂
n=0

∞∑︂
r=1

(±1)r+1 tr

r
Tr[qnrgr|Vn ]

)︄

= exp
(︄ ∞∑︂

r=1
(±1)r+1 tr

r

∞∑︂
n=0

(qr)n Tr[gr|Vn ]
)︄
≡ exp

(︄ ∞∑︂
r=1

(±1)r+1 tr

r
χ

V
(qr; gr)

)︄
,

or more simply using gr = (q; g)r = (qr; gr) as

[detV(1∓ tg)]∓ = exp
(︄ ∞∑︂

r=1
(±1)r+1 tr

r
χV(gr)

)︄
≡ exp

(︄ ∞∑︂
r=1

(±1)r+1 tr

r
χ

V
(qr; gr)

)︄
.

Remark 3.78 (Plethystic Exponential). For a function α(t1, . . . , tk) satisfying
α(0, . . . , 0) = 0, the (fermionic) Plethystic Exponential is defined by [12]

PEf [α(t1, . . . , tk)] ≡ exp
(︄ ∞∑︂

r=1
(−1)r+1 1

r
α(tr

1, . . . , tr
k)
)︄

.

It is customary to leave out f in PEf , and just automatically include the factor
(−1)r+1 for “fermionic” functions. Already working with this convention, for two
functions α, β (either one can be bosonic or fermionic) of some common variables,
the Plethystic Exponential satisfies the sum-to-product property

PE[α + β] = PE[α] PE[β].

One simple example is α(t, q) ≡ t and β(t, q) ≡ q, both bosonic or both fermionic,
for which it generates all antisymmetric combinations of the variables, that is

PE[t + q] = PE[t] PE[q] =
⎧⎨⎩

1
(1−t)(1−q) = 1 + t + q + t2 + tq + q2 + · · · ,

(1 + t)(1 + q) = 1 + t + q + tq,

thus reflecting the corresponding statistics.

3.6 Weyl integration formula
A particularly hard question is, how do we actually compute integrals appearing
in Corollary 3.54. Normally, we would need to have a parametrization of a

30



compact Lie group G, construct the invariant Haar measure dg by (for example)
left-translating the volume form in the identity of G to the whole G, express
characters in a given parametrization, and perform the D-dimensional integral,
where D is the dimension of G. More often than not, already the first part of
finding the parametrization can be extremely tough.

But there exists a remedy, which by utilizing the fact that characters are class
functions and a deep analysis of the structure of compact Lie groups enables us
to restrict the integration to a simpler subgroup of G, moreover setting us up just
right to use the powerful method of complex integration.

But first, we must expand our toolbox. Mostly we will just quickly recall some
elementary definitions, since one can find more details in any book on Lie groups.
Already in Proposition 3.17 we found the isomorphism between left-invariant
vector fields and vectors at the identity of a Lie group. Furthermore, this enables
us to induce a Lie algebra structure on the tangent space at identity.

Definition 3.79 (Lie algebra). A Lie algebra g ≡ TeG of a Lie group G is the
tangent vector space at the identity of G, together with the algebra structure

[a, b] ≡ [ℓa, ℓb]|e for any a, b ∈ g,

induced from the Lie bracket of left invariant vector fields on G.

Remark 3.80 (Jacobi identity). We automatically obtain the Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0, for any a, b, c ∈ g,

since it holds for the Lie bracket of vector fields.

Remark 3.81. Consider the behavior of group multiplication m : G×G→ G near
the identity. The corresponding pushforward at the point (e; e) is given by

m∗

⃓⃓⃓
(e;e)

: g⊕ g→ g, a⊕ b ↦→ a + b.

This can be seen by considering curve γa
• : R→ G with the tangent vector a at

the identity e ≡ γτ=0. We denote this by a ≡ D
dτ

γτ

⃓⃓⃓
τ=0

. Then, specially choosing
combination a⊕ 0↔ (γa

• ; e), we have

m∗

⃓⃓⃓
(e;e)

(a⊕ 0) ≡ m∗

⃓⃓⃓
(e;e)

D

dτ
(γa

τ ; e)
⃓⃓⃓
τ=0

= D

dτ
m(γa

τ ; e)
⃓⃓⃓
τ=0

= D

dτ
γa

τ

⃓⃓⃓
τ=0
≡ a.

The result follows from an analogous argument for b, using linearity of pushforward
(a general property of pushforwards), and finally taking a⊕ b = a⊕ 0 + 0⊕ b.

Intuitively, near the identity the group multiplication of G is reflected in the linear
structure of vector addition in g. This is very useful for the study of Lie groups.

It is easy to go from G to g, we just look at the tangent vectors. After understanding
the “small” transformations of G near the identity, it is also desirable to go in the
opposite way. There indeed exists the natural exponential map.
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Definition 3.82 (Exponential map). Let g be a Lie algebra of a Lie group G.
The exponential map is defined by

e• ≡ exp(•) : g→ G, a ↦→ γa
1 ≡ γa(1),

where γa
• : R → G is the integral curve of the left-invariant vector field ℓa

(corresponding to a by Proposition 3.17) going through the identity 1 ≡ γa
τ=0.

Since the curves σ ↦→ γτa(σ) and σ ↦→ γa(τσ) both correspond to the same
vector τa ∈ g, they are equal, and we obtain

eτa ≡ γτa(1) = γa(τ) ≡ γa
τ =⇒ a ≡ D

dτ
eτa

⃓⃓⃓⃓
τ=0

.

From the properties of integral curves of the left-invariant vector fields we
can also show that restrictions of e• to the lines through the origin in g are
actually one-parameter subgroups of G, that is for general a ∈ g we have

e(τ+σ)a = γa
τ+σ = γa

τ γa
σ = eτa eσa , e0a = e0 = 1 ≡ e =⇒ (eτa)−1 = e−τa .

Remark 3.83. It can be easily seen that the differential (or pushforward) of the
exponential map at the origin 0 ∈ g is the identity, thus by the inverse function
theorem it is locally invertible at 0 ↦→ 1. For an illustration see Figure 3.84.

Figure 3.84: Illustration of the exponential map e• mapping from the Lie algebra g to the
corresponding Lie group G. Locally around 0 ∈ g it is a diffeomorphism.

Similar to groups, we can also represent Lie algebras on other vector spaces.

Definition 3.85 (Lie algebra representation). A representation of a Lie algebra g
on a finite-dimensional vector space V is a homomorphism of Lie algebras
ξ• : g→ End(V ), meaning it preserves the Lie algebra structure, that is

ξ[a,b] = [ξa, ξb] ≡ ξa · ξb − ξb · ξa for any a, b ∈ g,

where the right side can be understood as the matrix commutator.

Remark 3.86. Note that End(V ) (with the Lie bracket given by the commutator)
is the Lie algebra of GL(V ).
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In the following definition we introduce the notion of inner automorphism or
conjugation, and the related Adjoint and adjoint representations. A great deal of
information about a Lie group can be extracted by the detailed study of their Lie
algebra structure.

Definition 3.87 (Conjugation, Adjoint and adjoint representations). Let G be
a Lie group. For any element g ∈ G we have a conjugation automorphism
ADg : G→ G given by ADg ≡ LgRg−1 , that is for any h ∈ G we have

ADgh ≡ ghg−1, also ADgADh = ADgh.

In the following let γ• : R→ G be a curve with the tangent vector a at the
identity e ≡ γτ=0. For example, we can take γτ ≡ eτa.

The corresponding induced map on the vectors at the identity gives rise to
the Adjoint representation Ad• : G→ GL(g) of G on g, that is Adg ≡ ADg∗|e.
Equivalently, using the previously defined curve we have

Adga ≡ D

dτ
ADgγτ

⃓⃓⃓⃓
τ=0

.

Once more, the Adjoint representation induces the adjoint representation
ad• : g→ End(g) of g on g by ad• ≡ Ad•∗|e, that is for any b ∈ g we have

adab ≡ d

dτ
Adγτ b

⃓⃓⃓⃓
τ=0

,

where we write “normal” derivative, because if V is a finite-dimensional vector
space, then TpV is canonically isomorphic to V for any p ∈ V .

Remark 3.88 (Adjoint representation Ad• is orthogonal). By construction g is a
real vector space. Hence, the Adjoint map Ad• is a real representation. Indeed,
induced maps are in general linear, and Adg is invertible with inverse Adg−1 , since

AdgAdg−1 = ADg∗ADg−1∗

⃓⃓⃓
e

= (ADgADg−1)∗

⃓⃓⃓
e

= (ADgg−1)∗

⃓⃓⃓
e

= ADe∗

⃓⃓⃓
e

= 1,

and also satisfies the property AdgAdh = Adgh, because ADgADh = ADgh.

Additionally, we can construct a real scalar product on g that is Ad-invariant, by
similar arguments as in Theorem 3.42. We just take any inner product ⟨•, •⟩ on g
and average it over G using the invariant Haar measure dg as

(•, •) ≡
ˆ

G

⟨Adg•, Adg•⟩ dg =⇒ (Adh•, Adh•) = (•, •) for any h ∈ G.

Thus, the Adjoint representation Ad• is orthogonal (see Remark 3.13).

Remark 3.89. One can show that the action of adjoint representation is actually
given by the Lie bracket, that is adab = [a, b]. Hence, we can rewrite the Jacobi
identity in Remark 3.80 as ad[a,b] = [ada, adb] ≡ ada · adb − adb · ada, which
confirms that ad• is really a representation in the sense of Definition 3.85.
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We also have very useful formulas relating the exponential and adjoint maps. They
can be recognized as common identities valid for matrices in linear algebra, but
they also hold generally in the abstract setting of Lie groups and algebras.

Proposition 3.90 (Formulas for e•, AD•, Ad•, and ad•). Let g be a Lie algebra
of a Lie group G. Then for any a ∈ g and g ∈ G we have

ADgea = eAdga and Adea = eada ,

where eada is understood as a matrix exponential of ada ∈ End(g).

Proof. It is enough to check the following properties of the exponential:
ADge(τ+σ)a = ADg(eτa eσa) = g eτa g−1g eσa g−1 = (ADgeτa)(ADgeσa),

ADge0a = ADge0 = ADg1 = 1,
D

dτ
ADgeτa

⃓⃓⃓⃓
τ=0

= Adg
D

dτ
eτa

⃓⃓⃓⃓
τ=0

= Adga.

Similarly for the second identity, where depending on the context 1 denotes either
the identity element in G or the identity element in GL(g):

Ade(τ+σ)a = Adeτaeσa = AdeτaAdeσa ,

Ade0a = Ade0 = Ad1 = 1,
D

dτ
Adeτa

⃓⃓⃓
τ=0

= ad
D
dτ

eτa

⃓⃓⃓
τ=0

= ada.

In Example 3.8 we presented a basic example of a Lie group, namely a torus Tn.
Its simplicity stems from the commutative multiplication of complex numbers.
Since any neighborhood of identity already generates a compact connected Lie
group, this implies that the exponential map is surjective on the torus [8].

Perhaps surprisingly, we will be always able to restrict the integration of class
functions on a compact connected Lie group to its maximal torus.

Definition 3.91 (Maximal torus, rank, Cartan subalgebra). Let G be a compact
connected Lie group with the Lie algebra g. Then we define:

(1) A subgroup T ⊂ G is a maximal torus of G if it is a torus in the
sense of Example 3.8, and there is no other torus T ′ with T ⊊ T ′ ⊂ G.
Equivalently, T is a maximal connected abelian subgroup of G, that is

gh = hg for any g, h ∈ T.

The dimension of the maximal torus T in G is called the rank of G.

(2) A subalgebra t ⊂ g is a Cartan subalgebra of g if it is a Lie algebra of
some maximal torus T of G, see (1). Equivalently, t is a maximal abelian
subalgebra of g, that is

[a, b] = 0, for any a, b ∈ t.

Remark 3.92. Various alternative definitions must be proved to be equivalent. An
interested reader can find the proofs for example in [8, 10]. They fundamentally
exploit properties of the exponential map (see Definition 3.82 and Proposition 3.90).
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Example 3.93 (Maximal torus of SO(d)). The maximal torus of SO(d) is

TSO(d) = SO(2)× · · · × SO(2)⏞ ⏟⏟ ⏞
r

∼= (S1)r,

where r ≡ ⌊d/2⌋ is the rank of SO(d) ≡ SO(2r + 1). The torus TSO(d) can be
parametrized in the standard representation ≡ Cd ≡ C2r+1 as

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ1 − sin θ1
sin θ1 cos θ1

. . .
cos θr − sin θr
sin θr cos θr

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓
θj ∈ [0, 2π)
j ∈ 1, . . . , r

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Alternatively, we can parametrize by r complex variables on the unit circle, namely
by x ≡ (x1, . . . , xr) ≡ (e̊ıθ1 , . . . , e̊ıθr).

Definition 3.94 (Weyl group). Let T be a maximal torus of a connected
compact Lie group G, and N be the normalizer of T in G, that is

N =
{︂
g ∈ G

⃓⃓⃓
gTg−1 = T

}︂
.

Then the quotient group W ≡ N/T is called the Weyl group of G.

Remark 3.95. It can be shown that the Weyl group W is always finite. Intuitively,
it is a group that permutes the factors in the torus.

We are now ready to state one of the main theorems of this section. It is a
generalization of the well-known fact that any SO(d) matrix can be conjugated by
a change of basis to the corresponding torus.

Theorem 3.96 (Maximal torus theorem). Let T be a maximal torus of a
connected compact Lie group G. Then every element g ∈ G is conjugate to
an element of T , that is

∃h ∈ G, t ∈ T : g = ADht ≡ hth−1.

Moreover, a general element of G is conjugate to |W| such elements of T .

Remark 3.97. One of the approaches (see [8]) to proving this important theorem
studies the map Ψ defined in the “proof” of Theorem 3.103.

Example 3.98 (Character of the standard representation of SO(d)).
Since characters are class functions, and by Theorem 3.96 every element can be
conjugated to the maximal torus, to evaluate χ(g) it is enough to specify χ(t) for
any corresponding torus element t↔ g. Using the parametrization introduced in
Example 3.93, we obtain
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χ (x↔ g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

r∑︂
i=1

cos(θi) =
r∑︂

i=1

(︃
xi + 1

xi

)︃
for d = 2r,

1 + 2
r∑︂

i=1
cos(θi) = 1 +

r∑︂
i=1

(︃
xi + 1

xi

)︃
for d = 2r + 1,

where ≡ Cd is the standard representation of SO(d).
Example 3.99 (Graded character of S( ) for SO(d)). Similarly as in the previous
example, using Proposition 3.75, Example 3.93, and realizing that eigenvalues of
the torus element parametrized by x↔ g are exactly {xi, 1/xi, 1}r

i=1, we obtain

P (t; x↔ g) ≡ χ
S( )(t; x↔ g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r∏︂
i=1

1
(1− txi)(1− t/xi)

for d = 2r,

1
1− t

r∏︂
i=1

1
(1− txi)(1− t/xi)

for d = 2r + 1.

We denoted P ≡ χ
S( ), since it will later turn out to be the “projection” factor.

The maximal torus theorem shows the significance of the conjugation map AD•.
Naturally, it is easier to study its “linearized” version, the Adjoint representation
Ad•. If we consider only operators on g corresponding to the torus elements,
that is {Adt | t ∈ T}, and recalling that Ad• is orthogonal (see Remark 3.88), we
obtain a commuting set of normal operators. Therefore, it will be possible to
perform simultaneous diagonalization, but first we must complexify g.

Definition 3.100 (Complexification of Lie algebra). Let g be the Lie algebra of
a Lie group G. The complexification of g is defined by gC ≡ g⊗RC ∼= g⊕ ı̊g,
where the algebra structure [•, •] of g is extended to gC by C-linearity. Similarly,
we extend representations (Ad, g) and (ad, g) to gC by C-linearity.

Definition 3.101 (Roots of Lie algebra). Let g be the Lie algebra of a compact
Lie group G of rank r, T be a maximal torus of G, and t be the corresponding
Cartan subalgebra of g. Then there is a set of nonzero elements R(G) ⊂ t∗C
(linear functionals on tC), called the real roots of gC, such that we obtain the
decomposition

gC = tC ⊕
⨁︂

α∈R(G)
gα,

where gα is the nonzero space (called the root space) corresponding to the
real root α, which is defined by

gα ≡ {a ∈ gC | adma = [m, a] = ı̊α(m)a for m ∈ t}
=
{︂
a ∈ gC

⃓⃓⃓
Adta = Adema = e̊ıα(m) a for t ≡ em ∈ T

}︂
,

where we used Proposition 3.90. Choosing an orthonormal basis for t and
representing α↔ α ≡ (α1, . . . , αr) and t↔ x ≡ (x1, . . . , xr) ≡ (e̊ım1 , . . . , e̊ımr)
in the spirit of Example 3.93, we also obtain

e̊ıα(m) = e̊ı
∑︁r

i=1 αimi =
r∏︂

i=1
(e̊ımi)αi ≡

r∏︂
i=1

xαi
i ≡ xα.
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Remark 3.102. We will use the standard fact that R(G) is symmetric about the
origin, that is if α ∈ R(G) is a root, then −α ∈ R(G) is a root as well. Since
roots are nonzero, there is always an even number of roots.

Finally, we are prepared to state and partially prove the main theorem of this
section — the Weyl integration formula. Together with the maximal torus theorem
they open the gates to the deeper representation theory of compact Lie groups.

Theorem 3.103 (Weyl integration formula). Let f be a class function on
a connected compact Lie group G of rank r, T be a maximal torus of G
parametrized by x ≡ (x1, . . . , xr), and W be the corresponding Weyl group.
Then we have

ˆ
G

f(g) dg = 1
|W|

"

|xi|=1

f(x)
⎡⎣ ∏︂

α∈R(G)
(1− xα)

⎤⎦[︄ r∏︂
i=1

dxi

2πixi

]︄
.

Remark 3.104. We use the same notation f for a class function on G, for its
restriction to T , and also for its coordinate expression.

Sketch of the proof. The idea is to restrict the integral of f over the whole G
only to the suitable integral over T . Consider the map

Ψ: G/T × T → G, (gT ; t) ↦→ ΨgT (t) ≡ Ψ(gT ; t) ≡ gtg−1.

From Theorem 3.96 we know, that Ψ is a finite-sheeted covering of G with |W|
sheets, where W is the Weyl group of G. Hence, it follows thatˆ

G

f dg ≡
ˆ

G

fωG =
ˆ

Ψ(G/T ×T )
fωG = 1

|W|

ˆ
G/T ×T

Ψ∗(fωG).

Since f is a class function, from definition of Ψ we have

(Ψ∗f)|(gT ;t) = f ◦Ψ(gT, t) = f(gtg−1) = f(t),

thus the only thing left to calculate is Ψ∗ωG.

To avoid dealing with many technicalities, we assume there exist left invariant
normalized volume forms ωG/T on G/T and ωT on T . In the following denote by
π1 and π2 the natural projection maps from G/T × T to G/T and T , respectively.
We obtain a left-invariant volume form on G/T × T as

ωG/T ×T ≡ (π∗
1ωG/T ) ∧ (π∗

2ωT ).

We want to find the factor D relating the volume forms Ψ∗ωG and ωG/T ×T , that
is for any (gT ; t) ∈ G/T × T

(Ψ∗ωG)
⃓⃓⃓
(gT ;t)

= D(gT ; t)
[︂
(π∗

1ωG/T ) ∧ (π∗
2ωT )

]︂⃓⃓⃓
(gT ;t)

.

Using the left-invariance of ω• we can translate the calculation to the identity by

(Ψ∗ωG)
⃓⃓⃓
(gT ;t)

≡ Ψ∗(ωG|gtg−1) = Ψ∗L∗
gt−1g−1ωG|e

= D(gT ; t) L∗
(g−1;t−1)

(︃[︂
(π∗

1ωG/T ) ∧ (π∗
2ωT )

]︂⃓⃓⃓
(eT ;e)

)︃
.
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Using linearity of L∗
(g−1;t−1) and multiplying from the left by L∗

(g;t), we obtain(︂
Lgt−1g−1 ◦Ψ ◦ L(g;t)

)︂∗
ωG|e = D(gT ; t)

[︂
(π∗

1ωG/T ) ∧ (π∗
2ωT )

]︂⃓⃓⃓
(eT ;e)

,

so after identifying g with g/t ⊕ t we have D(gT ; t) ≡ det
(︂
Lgt−1g−1 ◦Ψ ◦ L(g;t)

)︂
∗
.

Taking any vector at identity (a⊕ b) ∈ g/t ⊕ t = g with the corresponding curves
x• : R→ G/T and y• : R→ T , that is xτ=0 ≡ eT , yτ=0 ≡ e, and

a ≡ D

dτ
xτ

⃓⃓⃓
τ=0

and b ≡ D

dτ
yτ

⃓⃓⃓
τ=0

,

we can calculate(︂
Lgt−1g−1 ◦Ψ ◦ L(g;t)

)︂
∗
(a⊕ b) = D

dτ
Lgt−1g−1 ◦Ψ ◦ L(g;t)(xτ ; yτ )

⃓⃓⃓⃓
τ=0

just apply L(g;t) = D

dτ
Lgt−1g−1 ◦Ψ(gxτ ; tyτ )

⃓⃓⃓⃓
τ=0

apply Ψ(gT ; t) ≡ gtg−1 = D

dτ
Lgt−1g−1(gxτ )(tyτ )(gxτ )−1

⃓⃓⃓⃓
τ=0

apply Lgt−1g−1 and cancel gg−1 = D

dτ
g t−1xτ t yτ x−1

τ g−1
⃓⃓⃓⃓
τ=0

use ADgh ≡ ghg−1 = D

dτ
ADg

(︂
ADt−1(xτ ) yτ x−1

τ

)︂⃓⃓⃓⃓
τ=0

use Adg ≡ ADg∗

⃓⃓⃓
e

= Adg
D

dτ
ADt−1(xτ ) yτ x−1

τ

⃓⃓⃓⃓
τ=0

use Remark 3.81 = Adg(Adt−1a + b− a)

matrix notation = Adg

⎛⎝ Adt−1|g/t − 1g/t 0t→g/t

· · · 1t

⎞⎠(a; b)

Recalling Remark 3.88 for connected G actually leads to the conclusion that Ad•
is special orthogonal, thus det Adg = 1. Overall, we obtain

D(gT ; t) = det
⎛⎝ Adt−1|g/t − 1g/t 0t→g/t

· · · 1t

⎞⎠ = detg/t (Adt−1 − 1).

Since D does not depend on gT , we can write D(t) ≡ D(eT ; t) and calculate

ˆ
G/T ×T

f Ψ∗(ωG) =
ˆ

G/T ×T

f DωG/T ×T =
ˆ

T

f D

1⏟ ⏞⏞ ⏟(︄ˆ
G/T

ωG/T

)︄
ωT .

The proof is thus finally concluded by utilizing Definition 3.101 and Remark 3.102
to calculate

D(t) = detg/t (Adt−1 − 1) =
∏︂

α∈R(G)

(︂
x−α − 1

)︂
=

∏︂
α∈R(G)

(1− xα),

because the invariant integration over the torus T is given byˆ
T

(· · ·) ωT =
̇ 2π

0
(· · ·)

r∏︂
i=1

dθi

2π
≡

"

|xi|=1

(· · ·)
r∏︂

i=1

dxi

2πixi

.
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Remark 3.105. We chose the parametrization x ≡ (x1, . . . , xr) ≡ (e̊ıθ1 , . . . , e̊ıθr)
of the torus T such that it is covered exactly once when {θj}r

j run through the
interval [0, 2π). This is important for the choice of normalization of the roots in
Definition 3.101.

Remark 3.106. Every class function is invariant with respect to the Weyl group
W, thus we also have the simplified form (for derivation see [1, Appendix B])

ˆ
G

f(g) dg =
"

|xi|=1

f(x)
⎡⎣ ∏︂

α∈R+(G)
(1− xα)

⎤⎦
⏞ ⏟⏟ ⏞

D+
G(x)

[︄∏︂
i

dxi

2πixi

]︄
,

where R+(G) is the set of so-called positive roots.

Example 3.107. Specifically, for G = SO(d) we have explicit forms [1]

D+
SO(d)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏︂
1≤i<j≤r

(1− xixj)(1− xi/xj) for d = 2r,

r∏︂
i=1

(1− xi)
∏︂

1≤i<j≤r
(1− xixj)(1− xi/xj) for d = 2r + 1.
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4. The Master Formula
In this chapter we will derive the formula for the Hilbert series by utilizing
everything we learned about the deep representation theory of compact Lie groups.
At first, we will work in the special setting of a single real scalar (bosonic) field,
where the arguments are more transparent and thus easier to follow. Afterward,
we will outline the generalization of the formalism to arbitrary field content.

4.1 Strategy for scalar field
The main strategy for a scalar field Φ follows as:

(1) Construct the Single Particle Graded Representation RΦ (SPGR) containing
all possible operators consisting of only one Φ and any number of derivatives
(of the type ∂nΦ), excluding ones that are trivially zero by use of EOM.

— addressing EOM relations

(2) Combine multiple RΦ (consistently with the statistics of Φ) to create the Multi-
Particle Graded Representation JΦ (MPGR) capturing the highly redundant
set of all possible non-trivial operators (of the type ∂nΦr).

— representation theory inherently
addresses GDC relations

(3) Project out the multiplicities of independent Lorentz and gauge invariant
operators from JΦ by use of character orthogonality and formulas for graded
characters, thus obtaining the Hilbert series for the operator basis B, already
viewed as a graded dimension of K ≡ SpanB.

— picking out only scalar operators
and addressing IBP relations

This can be summarized in the diagram

Φ RΦ JΦ H0(ϕ,D),
⨁︁∞

n=0 Dn∂n•

and EOM

⨁︁∞
r=0 ϕrSr(•)

since Φ is a boson

´
SO(d)

1
P (D;g) χ•(ϕ,D;g)dg

and Weyl integration formula

where H0(ϕ,D) is the “main” part (to be defined) of the full Hilbert series H(ϕ,D),
and the factor 1/P (D; g) accounts for the IBP relations.

We will treat steps (1) and (2) in Section 4.2, afterward in Section 4.3 we
will derive the factor 1/P (D; g) appearing in the step (3), and we will finalize
the derivation for the scalar field in Section 4.4, with a pretty straightforward
generalization in Section 4.5.

4.2 Equations of motion redundancy
We would like to build RΦ by repeatedly applying derivatives on Φ, but we also
need to continuously utilize all possible relations to avoid any redundancies. At
this point only EOM relations can play a role, so we need to identify them.
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The kinetic Lagrangian density of a single scalar field Φ has the form

Lkin(Φ, ∂aΦ) ≡ 1
2∂aΦ∂aΦ,

which leads to the free equation of motion (known as the wave equation)

∂∂Φ ≡ ∂a∂aΦ = 0.

Applying one derivative, we obtain ∂aΦ, which will be our prototype of an object
transforming under the standard representation ≡ Cd of SO(d). Alternatively we
could work with ∂aΦ, however for SO(d) this leads to an equivalent representation,
since we have the invariant metric tensor δab enabling us to lower indices.

When we apply multiple derivatives we obtain symmetric representations Sn( ),
since partial derivatives automatically commute. But additionally, we must not
forget to apply EOM, thus we need to discard all trace parts of any operator.
Since for the fully symmetric tensor (representation) there is only one independent
contraction, this motivates us to define the representations below.

Definition 4.1 (Traceless symmetric representations of SO(d)). Let V be a
representation of SO(d), and Q(•, •) be a corresponding positive-definite
bilinear form (see Remark 3.13). We have a natural contraction for n ≥ 2

C : Sn(V )→ Sn−2(V ),
v1 · · ·vn ↦→

∑︂
i,j

Q(vi, vj)v1 · · · ˆ︁vi · · · ˆ︁vj · · ·vn,

where hats indicate that corresponding vectors are to be omitted, and which
can easily be checked to be a G-map using the G-invariance of Q(•, •). Thus,
Ker(C) is a subrepresentation of Sn(V ), and it gives us a decomposition

Sn(V ) = Ker(C)⊕ Sn(V )
Ker(C)

∼= Ker(C)⊕ Im(C) ≡ S{n}(V )⊕ Sn−2(V ),

since C is obviously surjective.

Consequently, we have (by definition S{0}(V ) ≡ C and S{1}(V ) ≡ V )

Sn(V ) = S{n}(V )⊕ S{n−2}(V )⊕ · · · ⊕ S{n−2p}(V ),

where p =
⌊︂

n
2

⌋︂
. We call representations S{n}(V ) as traceless symmetric.

Remark 4.2. A similar construction can be made for the tensor power V ⊗n, only
there we have more contractions, so decomposing it leads to the traceless part
and multiple copies of V ⊗n−2.

Remark 4.3. Suppose we have a representation W and assume there exists some
G-invariant contraction C on W . Then if W wants to be irreducible, it necessarily
must be traceless, otherwise Ker(C) would be its nonzero proper subrepresentation
(nonzero since it maps to a lower-dimensional space).
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Remark 4.4. It can be shown that the representations S{n}( ) for the standard
representation ≡ Cd of SO(d) are already irreducible [9].

We can create the traceless symmetric graded representation S{•}(V ) similarly to
S(V ). It is in our interest to calculate the corresponding graded character.

Proposition 4.5 (Graded character of traceless symmetric graded representation).
Let V be a representation of a compact Lie group G. We define the traceless
symmetric graded representation S{•}(V ) of V by

S{•}(V ) ≡
∞⨁︂

n=0
tnS{n}(V ).

The corresponding graded character χ
S{•}(V )(t; g) is given by

χ
S{•}(V )(t; g) ≡

∞∑︂
n=0

tnχ
S{n}(V )(g) = (1− t2)χ

S(V )(t; g) = 1− t2

detV (1− tg) .

Proof. Using Definition 4.1 we obtain for n ≥ 2.

Sn(V ) ≡ S{n}(V )⊕ Sn−2(V ) 3.53==⇒ χ
Sn(V )(g) = χ

S{n}(V )(g) + χ
Sn−2(V )(g).

For convenience, we extend the definition of χ
Sn(V ) for negative n to be zero. We

can now simply express χ
S{n}(V )(g) and calculate

∞∑︂
n=0

tnχ
S{n}(V )(g) =

∞∑︂
n=0

tn
[︂
χ

Sn(V )(g)− χ
Sn−2(V )(g)

]︂
= (1− t2)

∞∑︂
n=0

tnχ
Sn(V )(g) ≡ (1− t2)χ

S(V )(t; g),

thus the proof is finished by Proposition 3.75.

Derivation 4.6 (Single Particle Graded Representation RΦ for a single scalar field Φ).
All operators composed of one Φ modulo EOM are therefore contained in

RΦ = Span

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ
∂aΦ

∂{a1∂a2}Φ
...

∂{a1 · · · ∂an}Φ
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

∞⨁︂
n=0
DnS{n}( ) ≡ S{•}( ),

where { ··· } denotes the traceless symmetric part and ≡ Cd denotes the standard
representation of SO(d). We suggestively changed the grading labels t ↦→ D.

Derivation 4.7 (Multi-Particle Graded Representation JΦ for a single scalar field Φ).
Since Φ is a boson, the corresponding operators must obey permutation symmetry.
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We can obtain all operators modulo EOM in the symmetric powers of RΦ, thus

JΦ ≡
∞⨁︂

r=0
ϕrSr(RΦ) ≡ S(RΦ) ≡ S

(︂
S{•}( )

)︂
.

The corresponding graded character can be calculated using Corollary 3.77 and
Proposition 4.5 as (where we used notation P (D; g) from Example 3.99)

χJΦ
(ϕ,D; g) ≡ χ

S(RΦ)(ϕ,D; g) = PE
[︂
ϕ χ

RΦ
(D; g)

]︂
= PE

[︂
ϕ(1−D2)P (D; g)

]︂
.

Remark 4.8 (Gram determinant conditions). We are building JΦ in a certain
sense constructively. Since the representation theory intimately understands that
representations

⋀︂n( ) for n > d are trivially zero, operators which generate GDC
relations (see Section 2.1) are automatically discarded during the process.

Remark 4.9. Alternatively, we can view JΦ as a graded differential polynomial
quotient ring with the ideal generated by the equations of motion

JΦ = C[Φ; ∂a]
/︃⟨︂

∂∂Φ
⟩︂

≡ C
[︂
Φ, ∂aΦ, ∂{a1∂a2}Φ, . . . , ∂{a1 · · · ∂an}Φ, . . .

]︂
.

4.3 Integration by parts redundancy
This section will be already applicable in general, but we can always imagine we
are working with a scalar field Φ.

Suppose we have constructed the redundant representation J of all possible
operators modulo EOM, together with its graded character. Our goal is to find
the Hilbert series, which is the graded dimension of K ≡ SpanB ⊂ J . We need to
deal with IBP relations and also pick out only scalar (Lorentz and gauge invariant)
operators. This will be addressed by a cohomology-type calculation.

We would like to proceed similarly as in part (3) of Example 2.15, where we
realized that any non-trivial operator generates exactly one IBP relation between
operators containing one more derivative. Likewise for d ≥ 2, operators with
one free index can generate IBP relations, but only those that are not trivially
zero after applying the divergence. Prime example of operators which do not
contribute to the IBP relations are operators of the form

∂aOab where Oab ≡ O[ab] =⇒ ∂b∂aOab = ∂(b∂a)O[ab] = 0,

that is so called co-exact 1-forms. Thus, we are naturally led to the following
elementary concepts from homology/cohomology/Hodge theory.

Definition 4.10 (Co-closed and co-exact forms). Let Sect ΛkM be the space of
k-forms on the space-time manifold M. We define the following notation for
a form ω ∈ Sect ΛkM (thus σ ∈ Sect Λk+1M)

ω is co-closed def⇐⇒ ∂ · ω = 0,

ω is co-exact def⇐⇒ ∃σ : ω = ∂ · σ.
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Remark 4.11. For forms we automatically have ∂ ·∂ · • = 0 by symmetry of partial
derivatives and asymmetry of forms, thus every co-exact form is also co-closed.

In our case we work with the Euclidean space-time manifold M≡ Rd together
with the (Euclidean) Lorentz group SO(d), so the k-forms transform under the
representation

⋀︂k( ), where ≡ Cd is the standard representation of SO(d).

We would like to identify how many forms of a given degree are contained in J ,
and use this information to count the operators in K. This motivates us to study
SO(d)-linear maps between

⋀︂k( ) and J , because images of such non-trivial maps
identify subrepresentations of J with similar or same transformation properties
as those of k-forms.

Definition 4.12 (k-form graded representation). Let J be a multi-particle
graded representation of the group SO(d). The k-form graded representation
of J is defined by

J[k] ≡ HomSO(d)
(︂⋀︂k( ),J

)︂
.

We say that O ∈ J is a k-form operator (we denote it by O[k]) if O is in the
image of some map from J[k]. Furthermore, by a straightforward extension of
Definition 4.10 to J[k] we can define its subspaces, for example

J[k]co-closed ≡ HomSO(d)
(︂⋀︂k( ), {O ∈ J | ∂ · O = 0}

)︂
,

J[k]co-exact ≡ HomSO(d)
(︂⋀︂k( ),

{︂
O ∈ J

⃓⃓⃓
∃O′

[k+1] : O = ∂ · O′
[k+1]

}︂)︂
.

To show this definition is indeed sensible, we need to make several comments
about the exterior representations of SO(d).

Remark 4.13. On any pseudo-Riemannian space, but we will specifically take Rd,
we have the Hodge star operator ∗ : ΛkRd → Λd−kRd defined in components by

ωa1···ak

∗↦−−→ (∗ω)ak+1···ad ≡
1
k!ω

a1···akεa1···akak+1···ad ,

where ε is the so-called (d-dimensional) Levi-Civita tensor.

Since ε is invariant with respect to SO(d) transformations, after C-linear extension
of Hodge star ∗ to ≡ Cd we get an isomorphism⋀︂k( ) ∼=

⋀︂d − k( ) =⇒ J[k] ∼= J[d−k].

This just reflects that representation theory “understands” that any k-form can
be transformed by contraction with ε to a (d− k)-form, or vice versa.

Remark 4.14. It is a standard result that representations
⋀︂k( ) are irreducible

for k < d/2 [8, 9] (thus also for k > d/2, see Remark 4.13). This is very important,
because for such k we can use Corollary 3.54, or maybe even better Remark 3.73.

But then there is the case of k = d/2 for even d, which requires a little more work
to be analyzed. The Hodge star operator satisfies the identity

∗ ◦ ∗ = (−1)k(d−k)1,
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so for d = 2k we obtain the automorphism of kth exterior representation of

τ ≡ (−i)k∗ :
⋀︂k( )→

⋀︂k( ), τ ◦ τ = 1,

giving us the canonical decomposition of
⋀︂k( ) to two subrepresentations, namely

to the self-dual representation and the anti-self-dual representation as⋀︂k( ) =
⋀︂k

+( )⊕
⋀︂k

−
( ),

which are eigenspaces of τ corresponding to the eigenvalues 1 and −1, respectively.
These already turn out to be irreducible (and mutually inequivalent), therefore

dim HomSO(d)
(︂⋀︂k( ),

⋀︂k( )
)︂

=
∑︂
±

dim HomSO(d)

(︃⋀︂k( ),
⋀︂k

±
( )

)︃
= 1 + 1 = 2.

This is exactly what we want, because each of the 2 independent k = d/2 form
representations plays their own role in the following derivation.

Derivation 4.15 (Addressing IBP relations by cohomology, splitting H = H0 + ∆H).
Since IBP relations tell us that total divergence terms are equivalent to zero, the
representation K ≡ SpanB is composed of all 0-forms contained in J modulo
the co-exact ones. The Hilbert series is thus given by the graded multiplicities of
trivial representations in J that are not co-exact, that is

H(ϕ,D) ≡ dim(ϕ,D)K = dim(ϕ,D) J[0]not co-exact.

For the sake of brevity, we will write just dim • instead of dim(ϕ,D) •. Since to
every non-trivial co-exact k-form corresponds exactly one (k + 1)-form that is not
co-closed (see Definition 4.10), by keeping track of the right grading we obtain

dimK =
dim J[0]not co-exact⏟ ⏞⏞ ⏟

dimJ[0] − dimJ[0]co-exact

= dimJ[0] −D dimJ[1]not co-closed

= dimJ[0] −D
(︂
dimJ[1] − dimJ[1]co-closed

)︂
= dimJ[0] −D

(︄
dimJ[1] − dimJ[1]co-exact⏞ ⏟⏟ ⏞

D dim J[2]not co-closed

− dimJ[1] co-closed
not co-exact

)︄
iteratively

......
=

d∑︂
k=0

(−D)k dimJ[k]⏞ ⏟⏟ ⏞
H0

+
d∑︂

k=1
(−1)k+1Dk dimJ[k] co-closed

not co-exact⏞ ⏟⏟ ⏞
∆H

,

where we used the splitting of co-closed forms to the co-exact ones and to the rest
(see Remark 4.11). Iteration terminates because there are no k-forms with k > d.

Hence, we found that the Hilbert series naturally splits into two pieces, where
we will intuitively infer in Remark 4.16 that ∆H is a small correction to the
“main” part H0. Since H0 usually contains almost the whole information of H, we
sometimes refer to it also as the Hilbert series. We will obtain an exact formula
for H0, but calculation of ∆H is in some sense less straightforward.
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Remark 4.16 (Contributions to ∆H). One such co-closed but not co-exact form is
the Levi-Civita tensor ε•···• ≡ ∗1 (where ∗ denotes the Hodge dual). This follows
because it is constant, thus co-closed, and also a top-form, so there is no form
of higher degree. We therefore always have a contribution of −(−D)d to ∆H,
because we overcount ε•···• in the H0 part.

In the case of a single scalar field Φ, the one-form ∂aΦ also falls down to that
category. Co-closedness results from EOM, as ∂ · ∂Φ ≡ ∂a∂aΦ = 0, and it is
obvious that it is not co-exact. Since it contains one derivative, and we need
another one to bring it down to a 0-form, we obtain a contribution of ϕD2 to ∆H.

One could try to find other examples in J[k] co-closed
not co-exact

, but in the case of a scalar
field there are none. That such terms are pretty rare sounds plausible. If the
divergence of a form is not automatically zero by its components’ symmetry, only
other possibilities are that it is either constant (only ε•···•) or it vanishes by EOM.
This typically leads to only a couple of instances, since the divergence of a form
containing numerous particle fields is unlikely to be identically zero (for example
∂a(∂aΦΦ) = ∂a∂aΦΦ + ∂aΦ∂aΦ ̸= 0), and if we have to use only one particle field,
there are not many such forms because ∂[•∂•] ≡ 0.

We conclude that for a single scalar field we have

∆H(ϕ,D) = (−1)d+1Dd + ϕD2.

This agrees with an explicit formula for ∆H, which is specific to the case where
SPGR corresponds to a conformal representation (in particular for a scalar field),
derived by Henning, Lu, Melia, and Murayama [1].

4.4 Integral formula for the Hilbert series
In this section we finalize the derivation of the formula for the Hilbert series,
namely for the “main” part H0. We essentially have done the hard work in
Section 4.3, now we just (in the same spirit as in Corollary 3.54) express the
graded dimension occurring in H0 through integration of the graded characters.

Derivation 4.17 (Projection factor 1/P (D; g) addressing IBP relations). First, we
can perform the manipulations (just to obtain a nice alternative expression)

H0(ϕ,D) ≡
d∑︂

k=0
(−D)k dim(ϕ,D) J[k] ≡

d∑︂
k=0

(−D)k dim(ϕ,D) HomSO(d)
(︂⋀︂k( ),J

)︂

= dim(ϕ,D) HomSO(d)

(︄ d⨁︂
k=0

(−D)k
⋀︂k( ),J

)︄
≡ dim(ϕ,D) HomSO(d)

(︂⋀︂−( ),J
)︂
,

where
⋀︂−( ) is the exterior graded representation of , but with alternating signs

in the grading. Using Proposition 3.75 we can calculate its graded character as

χ⋀︁−( )(D; g) ≡
∞∑︂

n=0
(−D)nχ⋀︁n( )(g) = det (1−Dg) = 1

χ
S( )(D; g) ≡

1
P (D; g) .
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Derivation 4.18 (Master Formula for H0). Since Derivation 4.15 was not specific
to a single scalar field, we quite generally obtain the Master Formula for H0 as

H0(ϕ,D) = dim(ϕ,D) HomSO(d)
(︂⋀︂−( ),J

)︂
=
ˆ

SO(d)
χ⋀︁−( )(D; g−1) χJ (ϕ,D; g) dg

=
ˆ

SO(d)
det (1−Dg⊺)⏞ ⏟⏟ ⏞

det (1−Dg)

χJ (ϕ,D; g) dg ≡
ˆ

SO(d)

1
P (D; g)χJ (ϕ,D; g) dg ,

where we used equality (2) of Corollary 3.54 extended to the case of graded
representations, together with relation g−1 = g⊺ valid for SO(d) (see Example 3.11).
Integration can be further simplified by restricting it to the torus T of SO(d)
(using the Weyl integration formula discussed in Section 3.6).

For the special case of a single scalar field we therefore obtain

H(ϕ,D) =
ˆ

SO(d)

1
P (D; g) PE

[︂
ϕ(1−D2)P (D; g)

]︂
dg⏞ ⏟⏟ ⏞

H0(ϕ,D)

+ (−1)d+1Dd + ϕD2⏞ ⏟⏟ ⏞
∆H(ϕ,D)

.

We will continue the calculation in Section 5.1.

4.5 Generalization to arbitrary field content
We are almost ready to generalize the derivation to arbitrary field content. To
say almost is actually a big overstatement, since there are numerous places where
it is necessary to use sophisticated tools far beyond the scope of this thesis.
Nonetheless, the big picture can be understood very well after the worked out
case of a single scalar field.

Our starting data for any EFT are:

• Particle fields {Φi} together with a specification of their representations under
the Lorentz group SO(d) and a possible internal group G composed of gauge
groups and other (for example global) symmetry groups. We always assume
particle fields transform linearly under G.

• EOM generated from the kinetic Lagrangian density Lkin.

• Possibly some other constraints, an example being the Bianchi identities for
the Maxwell tensor

3∂[aFbc] = daFbc = 0.

We follow the strategy in Section 4.1 with slight modifications, see the diagram
below. An additional internal group G is accounted for simply by assigning to
every operator its corresponding character with respect to G. Their only role
will be played out at the end, where we just project out the scalar operators by
integration over G.

{Φi} {RΦi
} J H0(ϕ,D)

⨁︁∞
n=0 Dn∂n•

and EOM

⨂︁
i

(︃
∞⨁︁

r=0
ϕr

i
Sr(•i)⋀︁

r(•i)

)︃
Φi is a boson

fermion

´
SO(d)×G

1
P (D;g) χ•(ϕ,D;g)dg

and Weyl integration formula
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Remark 4.19. Now that we work with the direct product of groups SO(d)×G
(see Definition 3.7), we will understand group elements as g ≡ (gSO(d); gG). In the
following we will just write the dependence on g, but it is easy to recognize that
some parts of expressions depend only on gSO(d), while others only on gG.

Remark 4.20 (Fermions). We need to proceed more carefully with particle fields
that are fermions (spinors), since objects transforming spinorially must be inte-
grated over the covering group Spin(d) of SO(d). This leads to some technicalities,
so we will focus mainly on bosons. We refer the interested reader to [1, 13].

Derivation 4.21 (Single Particle Graded Representations {RΦi
} for general fields).

Once again, we start by building the single particle graded representations {RΦi
}.

In the case of a scalar field it was useful to decompose representations obtained
just by applying derivatives to smaller pieces, since some of them were trivially
zero by use of EOM. Decomposition to irreducible representations under the action
of SO(d) is effective in general, because any constraint (EOM or other) always
discards one or several whole irreducible representations. The more complicated
example of electromagnetic field (photons) will be shown in Section 5.3.

If we successfully apply all EOM and other relations, we will be left with {RΦi
},

which decompose to the space-time SO(d) part and the internal G part as

RΦi
= RSO(d),Φi

⊗RG,Φi
.

The corresponding graded characters are then

χ
RΦi

(D; g) ≡ χ
RSO(d),Φi

⊗RG,Φi

(D; g) = χ
RSO(d),Φi

(D; g) χ
G,Φi

(g),

where χ
G,Φi

is just the character of the internal group G representation of the
particle field Φi, since all operators in RΦi

contain only one Φi.

Remark 4.22 (Young diagrams). Tensor powers ⊗n of the standard representation
of SO(d) are typically decomposed by usage of so-called Young symmetrizers [11].
The idea it to exploit mutually commuting actions of SO(d) and the symmetric
group Sn (group of permutations on n symbols), which acts by permuting the
indices of the tensor. We can thus decompose ⊗n to subrepresentations already
irreducible under Sn, particular examples already showed in Definition 3.59, where
Sn( ) corresponds to the trivial representation under permutations, and

⋀︂n( )
corresponds to the sign representation. Other irreducible representations have
“mixed” symmetries. Any irreducible representation of Sn is uniquely described
by a Young diagram with n boxes, that will be intuitively used in Section 5.3.

Derivation 4.23 (Multi-Particle Graded Representation J for general fields).
For Φi boson/fermion, we obtain all operators containing only this particle field
in symmetric/exterior powers of RΦ, thus JΦi

is

JΦi
≡

∞⨁︂
r=0

ϕr
i

Sr(RΦi)⋀︁
r(RΦi)

= S(RΦi)⋀︁(RΦi)
.

The full Multi-Particle Graded Representation J containing all possible operators
(modulo EOM and other relations) is obtained just by taking the tensor product

J ≡
⨂︂

i

JΦi
=
⨂︂

i

S(RΦi)⋀︁(RΦi)
.
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The corresponding graded character is given by Corollary 3.77 as

χJ (ϕ,D; g) =
∏︂

i

χJΦi

(ϕi,D; g) =
∏︂

i

PE
[︃
ϕi χ

RΦi

(D; g)
]︃

= PE
[︄∑︂

i

ϕi χ
RΦi

(D; g)
]︄
,

with the proper statistics understood in PE (see Remark 3.78).

Derivation 4.24 (General Master Formula for the Hilbert series). Finally, by the
same arguments as in Section 4.3, only with additional integration over the internal
group G, we state the Master Formula

H(ϕ,D) =
ˆ

SO(d)×G

1
P (D; g)χJ (ϕ,D; g) dg⏞ ⏟⏟ ⏞

H0(ϕ,D)

+ ∆H(ϕ,D),

where ∆H corrects for miscalculations in H0 caused by existence of co-closed but
not co-exact forms in J , namely

∆H(ϕ,D) =
d∑︂

k=1
(−1)k+1Dk dim(ϕ,D) J[k] co-closed

not co-exact

≡
d∑︂

k=1
(−1)k+1Dk dim(ϕ,D) HomSO(d)×G

(︃⋀︂k( ),J co-closed
not co-exact

)︃
.

In the next chapter we will apply the formalism to some simple examples. Hopefully,
they will suffice to unveil the main techniques and solve some ambiguities of our
exposition up to this point. Of course, there is much more to learn, and we will
try to refer the interested reader to the relevant sources.
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5. Applications of the Formalism
We are now ready to employ the formalism developed in the preceding chapters.
We will not be able to obtain the full Hilbert series, but by expanding the Plethystic
Exponentials we will focus on parts with fixed field content (see Remark 2.14).

In general, the final integrals we will obtain are just, to put it simply, gigantic.
Nevertheless, the results can be obtained by “just” calculating a finite number of
residues, since the integrands are rational functions. This can be automated by
use of computer algebra systems, such as Mathematica. Since it is not possible to
show all the details of the following computations, we encourage the reader to go
through the accompanying Mathematica notebook [14].

First, we will finish the calculation for a single scalar field. Analysis of the results
will give us numerous enlightening inputs on the structure of the operator basis.
We will give a brief discussion regarding the dependence of the Hilbert series on
the dimension of the space-time d. After that, we will show on a slightly more
complicated example of the electromagnetic field (photons) how to proceed when
the building block of the Lagrangian has non-trivial transformation properties.

5.1 Single scalar field
For concreteness, we will write out equations only for d = 4. Picking up where
we left off the case of a single scalar field in Section 4.4, the usage of the Weyl
integration formula for SO(4) (see Theorem 3.103 and Example 3.107) leads to

H0(ϕ,D) =
ˆ

SO(4)

1
P (D; g)

χJΦ
(ϕ,D;g)⏟ ⏞⏞ ⏟

PE
[︂
ϕ(1−D2)P (D; g)

]︂
dg

=
"

|x1|=1
|x2|=1

(1−Dx1)(1−D/x1)(1−Dx2)(1−D/x2)×

× PE
[︄

ϕ(1−D2)
(1−Dx1)(1−D/x1)(1−Dx2)(1−D/x2)

]︄
×

×(1− x1x2)(1− x1/x2)
dx1

2πix1

dx2

2πix2
,

where we have |D| < 1 (see Definition 2.10), x = (x1, x2) parametrizes the torus
T of SO(4), and we used Example 3.99 to obtain

P (D; x) ≡ χ
S( )(D; x) = 1

(1−Dx1)(1−D/x1)(1−Dx2)(1−D/x2)
.

Calculation 5.1 (Fixed field content Φr, r ≤ 3). It is a straightforward exercise
to show that the only non-trivial operators with the field content Φr, r = 1, 2, 3,
are exactly Φ1, Φ2, and Φ3 (we use bold numbers only for visibility). This indeed
checks out with the calculation through the Hilbert series formalism for any given
d, see the accompanying Mathematica notebook. We must not forget the term

∆H(ϕ,D) = (−1)d+1Dd + ϕD2

for r = 1, otherwise it does not contribute.
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Calculation 5.2 (Fixed field content Φ4). The simplest non-trivial case are operators
with the power r = 4 of Φ (that is of the type ∂nΦ4). Just by expanding the
Plethystic Exponential defined in Remark 3.78, we get (t stands for any set of
parameters, and the notation |ϕ=4 means the coefficient in front of ϕ4)

PE[ϕf(t)]
⃓⃓⃓
ϕ4

= 1
24
(︂
f(t)4 + 6f(t)2f(t2) + 3f(t2)2 + 8f(t)f(t3) + 6f(t4)

)︂
,

where in the place of f(t) we substitute (1−D2)P (D; x). For example, the term
f(t4) corresponds to (t4 means we take the 4th power of every argument)

(1−D8)P (D4; x4) = (1−D8)x4
1x

4
2

(1−D4x4
1)(x4

1 −D4)(1−D4x4
2)(x4

2 −D4) .

Just to carry out the calculation a little further, we multiply this term by the rest
of the integrand, after which using the residue theorem twice and performing a
considerable amount of algebra (not included here) results in

ˆ
SO(4)

1
P (D; g)

1
4(1−D8)P (D4; g4) dg = 1

4(1−D8)
"

|xi|=1

dx1

2πi

dx2

2πi
×

×(1− x1x2)(x2 − x1)(1−Dx1)(x1 −D)(1−Dx2)(x2 −D)x2
1x2

(1−D4x4
1)(x4

1 −D4)(1−D4x4
2)(x4

2 −D4)

= 1
4

˛

|x2|=1

dx2

2πi

x2

(1 +D2x2
2)(x2

2 +D2) = 1
4

1
1−D4

Poles in the first integration are (D
removable

,−D, iD,−iD), and in the second (iD,−iD).

If we wanted to continue the whole calculation by hand, we would probably lose
that hand. Expanding the Plethystic Exponential gave us 5 terms, each leading to
a pretty large integrand. Poles are easy to find, but either we have poles of higher
degree, so we must take derivatives to calculate the residues, or there are multiple
(up to 3) poles for a single term. And we must do that twice, for x1 and x2.

Thankfully, Mathematica comes to the rescue. Simply by calculating the indicated
residues and summing them all, we obtain (since ∆H|ϕ4 = 0)

H4(D) ≡ H(ϕ,D)
⃓⃓⃓
ϕ4

= 1
(1−D4)(1−D6) = 1+D4 +D6 +D8 +D10 +2D12 + · · · ,

reproducing the result calculated in [1]. This implies there is only one independent
operator of the type ∂0Φ4 ≡ Φ4 (obviously), one of the type ∂4Φ4, one of the type
∂6Φ4, but two of the type ∂12Φ4, and so on.

Remark 5.3 (Interpretation of the Hilbert series). The interpretation of this Hilbert
series is slightly different from the ones in Example 2.15, to which Remark 2.13 is
directly applicable. Since we have now fixed the operator field content, the form
of H4 reflects independent possibilities of assigning a given number of derivatives
to the 4 fields Φ and contracting them.

For example, we can take the following assignments of 4 and 6 derivatives,

∂∂Φ∂Φ∂ΦΦ ≡ ∂b∂aΦ∂aΦ∂bΦΦ and ∂∂Φ∂∂Φ∂∂ΦΦ ≡ ∂c∂aΦ∂a∂bΦ∂b∂cΦΦ,
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to be “generators”, and any operator of the type ∂nΦ4 can be already constructed
by repeatedly assigning derivatives and contracting them in the same way.

Remark 5.4 (Challenge). It is pretty easy to transform any operator of the type
∂4Φ4 to the trivial zero operator or to the one stated above, for example

∂Φ∂Φ∂Φ∂Φ ≡ ∂aΦ∂aΦ∂bΦ∂bΦ = ∂b(∂aΦ∂aΦ∂bΦΦ)
∼ 0 by IBP

− ∂aΦ∂aΦ
(︂
∂b∂bΦ

)︂
Φ

∼ 0 by EOM

it is understood − ∂b∂aΦ∂aΦ∂bΦΦ− ∂aΦ∂b∂aΦ∂bΦΦ

that ∂ΦΦ ≡ (∂Φ)Φ =− 2∂b∂aΦ∂aΦ∂bΦΦ ≡ −2∂∂Φ∂Φ∂ΦΦ.

We encourage the reader to show that any (non-trivial) operator of the type ∂6Φ4

is equivalent to the one stated above. If it does not feel like a challenge, have a go
at operators of the type ∂8Φ4 or ∂10Φ4. Hopefully, it will be sufficient evidence,
that even in the simplest example of a single scalar field, the combination of EOM
and IBP relations leads to complexity that should not be underrated.

And everything gets exponentially more tangled for a higher number of fields,
where GDC relations start to kick in. Still, the Hilbert series formalism can give
us (if we are able to perform the integration) information to all orders in powers
of derivatives for any fixed field content Φr.

The authors of [1] explicitly calculated the Hilbert series of a single scalar field
Hr(D) for r = 1, . . . , 8, but only in the dimension d = 4. As is expected, our
calculations agree with theirs. It is very hard to go beyond the field content of Φ8

(integrands become so lengthy, that even Mathematica has a really rough time),
so we will rather explore the dependency of the Hilbert series on the dimension d.

Below, in Tables 5.6 and 5.7 we list the Hilbert series for r = 4, 5, 6 and all
dimensions d ≥ 2. For illustration, we list the corresponding expansions to the
order of ∂20Φr in Tables 5.8, 5.9 and 5.12. We will make a comment in Section 5.2
concerning the independence of Hr(D) on d for d ≥ r. For easier comparison of
their dependence on d we also include Figures 5.10 and 5.13. To our knowledge,
results of Hr(D) for r = 5, 6 in dimensions other than d = 4 are novel.

Remark 5.5 (Analysis of H4(D)). Comparing H4(D) for d = 3 and d = 4, we can
see in Table 5.6 that for d = 3 we have one additional operator for every one in
d = 4, but with 9 more derivatives. This corresponds to the operator

εabc(∂∂∂∂aΦ)(∂∂∂bΦ)(∂∂cΦ)(Φ).

Such an ε-assignment of derivatives “can be used only once”, because by repeat-
ing it twice, we can deconstruct two ε•···• as a combination of δ••, thus only
contractions, which are already accounted for by the denominator.

Why is there no such operator in d = 4, where we can contract derivatives with
εabcd? Since derivatives commute, in order to obtain non-trivial operator, we
must contract εabcd with derivatives standing before different fields Φ. But we are
always able to move all derivatives in front of one Φ to the others by use of IBP
relations, thus such an operator does not exist. This applies in general for scalar
fields, so operators with ε•···• exist only for d < r. Note that the only source of
operators with an odd number of derivatives are ε•···• in odd dimensions.
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Somehow, by going down to d = 2, we completely lose the operator of the type
∂6Φ4 (and also its “iterations”). We will study this in more detail in Section 5.2.

d H4(D) H5(D)

≥ 5 1 +D12 +D14 +D16 +D18 +D30

(1−D4)(1−D6)(1−D8)(1−D10)(1−D12)

4 1
(1−D4)(1−D6)

1 +D10 +D12 + 2D14 + 2D16 +D18 +D22 +D24 +D28 +D30

(1−D4)(1−D6)(1−D8)(1−D10)(1−D12)

3 1 +D9

(1−D4)(1−D6)
1 +D9 +D12 +D13 +D14 + 2D15 +D16 +D17 +D18 +D21 +D30

(1−D4)(1−D6)(1−D10)(1−D12)

2 1
1−D4

1 +D12

(1−D4)(1−D12)

Table 5.6: The Hilbert series for a single scalar field (fixed field content Φ4 and Φ5).

d H6(D)

≥ 6
1+2D10+5D12+7D14+9D16+11D18+13D20+14D22+21D24+24D26

+28D28+32D30+26D32+22D34+13D36+7D38+3D40+D42+D44

(1−D4)(1−D6)2(1−D8)3(1−D10)2(1−D12)

5

1+2D10+5D12+7D14+D15+9D16+D17+11D18+3D19+13D20+7D21+14D22+13D23+21D24

+22D25+24D26+26D27+28D28+32D29+32D30+28D31+26D32+24D33+22D34+21D35

+13D36+14D37+7D38+13D39+3D40+11D41+D42+9D43+D44+7D45+5D47+2D49+D59

(1−D4)(1−D6)2(1−D8)3(1−D10)2(1−D12)

4
1+3D10+6D12+11D14+17D16+22D18+31D20+36D22+48D24+53D26+58D28

+58D30+48D32+38D34+23D36+14D38+6D40+4D42+2D44+D46

(1−D4)(1−D6)2(1−D8)3(1−D10)(1−D12)

3
1+D8+2D9+2D10+2D11+3D12+5D13+4D14+6D15+5D16+6D17+6D18+6D19+5D20+6D21+6D22

+5D23+6D24+6D25+6D26+5D27+6D28+4D29+5D30+3D31+2D32+2D33+2D34+D35+D43

(1−D4)(1−D6)2(1−D8)(1−D10)(1−D12)

2 1 +D4 +D6 + 2D8 +D10 + 3D12 + 3D16 +D18 +D22

(1−D8)(1−D12)2

Table 5.7: The Hilbert series for a single scalar field (fixed field content Φ6).

d4n

d n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

≥ 4 1 0 0 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 2 0 2
3 1 0 0 0 1 0 1 0 1 1 1 0 2 1 1 1 2 1 2 1 2
2 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Table 5.8: Coefficients of the Hilbert series for a single scalar field (fixed field content Φ4).
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d5n

d n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

≥ 5 1 0 0 0 1 0 1 0 2 0 2 0 5 0 4 0 8 0 9 0 13
4 1 0 0 0 1 0 1 0 2 0 3 0 5 0 6 0 10 0 12 0 17
3 1 0 0 0 1 0 1 0 1 1 2 0 4 2 3 3 6 3 7 5 8
2 1 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 3 0 0 0 3

Table 5.9: Coefficients of the Hilbert series for a single scalar field (fixed field content Φ5).
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Figure 5.10: Semi-log plot of the coefficients d5n in dimensions d = 2, . . . , 5. In other words,
the number of independent operators of the type ∂nΦ5.

Remark 5.11 (Analysis of H5(D)). Now turning our attention to H5(D), we
see even higher level of complexity. Not only do we have more terms in the
denominator, reflecting more building blocks of how one can assign and contract
derivatives, but also even in d ≥ 5 where we can not use ε, we have more starting
blocks. This simple interpretation of the numerator as extra starting operators is
possible in general for a scalar field [1].

However, in a more complicated EFT we can encounter a Hilbert series which can
not be brought to the canonical form (see Remark 2.13) with only positive terms
in the numerator. If this is the case, and we will encounter it in Section 5.3, it is
an indication of more complicated relations between operators.

Comparing H5(D) for d = 4 and d = 5 we can see that in d = 4 we have several
(similarly as in the discussion on H4(D)) additional operators for every one in
d = 5. For example, the term D10 corresponds to the operator

εabcd(∂∂∂∂aΦ)(∂∂∂bΦ)(∂∂cΦ)(∂dΦ)(Φ).
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In d = 3 we have some similar “starting” operators (just check that some terms
in the numerator are the same for d = 3 and d = 4, or even d = 5), but others
dropped one D, which corresponds to ε with one index less.

d6n

d n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

≥ 6 1 0 0 0 1 0 2 0 4 0 6 0 13 0 19 0 36 0 58 0 97
5 1 0 0 0 1 0 2 0 4 0 6 0 13 0 19 1 36 1 58 4 97
4 1 0 0 0 1 0 2 0 4 0 6 0 14 0 23 0 45 0 75 0 132
3 1 0 0 0 1 0 2 0 3 2 5 2 10 7 13 12 23 19 35 32 50
2 1 0 0 0 1 0 1 0 3 0 1 0 6 0 1 0 8 0 4 0 10

Table 5.12: Coefficients of the Hilbert series for a single scalar field (fixed field content Φ6).

5 10 50 100 500

100

106

1010

Figure 5.13: Log-log plot of the coefficients d6n in dimensions d = 2, . . . , 6. In other words,
the number of independent operators of the type ∂nΦ6.

Remark 5.14 (Analysis of H6(D)). Although looking at Table 5.12 it seems there
are more operators in d = 4, at around n ≈ 100 the dimensions d = 5, 6 overtake
(see Figure 5.13). For even n we have dd=5

6n = dd=6
6n , but in d = 5 we additionally

have odd operators containing ε•···•.

Going down with d, the number of terms in the denominator decreases due to GDC
relations, leading to the exponential suppression of the number of independent
operators for a given power of D. The asymptotics of the operator Hilbert series
were studied by Melia and Pal [15]. Perhaps surprisingly, they seem to approximate
pretty well even for small n.
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5.2 Sidenote — Gram determinant conditions
As we already mentioned several times, when lowering the dimension d some
operators can vanish, as is evident from Tables 5.6 and 5.7. We will give an
explicit example of such an operator and comment on this phenomenon.

The simplest example we already pointed out were operators of the type ∂6Φ4,
which somehow vanish in d = 2. We will now show that EOM conditions are
enough to eliminate one of the operators written out in Remark 5.3. Just expanding
the contractions, using the EOM relation (in d = 2) for the green terms

∂∂Φ = ∂a∂aΦ ≡ ∂1∂1Φ + ∂2∂2Φ != 0 =⇒ ∂1∂1Φ = −∂2∂2Φ,

and commuting some of the second derivatives leads to (terms cancel pair by pair)

∂∂Φ∂∂Φ∂∂ΦΦ =

+∂1∂1Φ∂1∂1Φ∂1∂1ΦΦ
+∂2∂1Φ∂1∂1Φ∂1∂2ΦΦ
+∂1∂2Φ∂2∂1Φ∂1∂1ΦΦ
+∂2∂2Φ∂2∂1Φ∂1∂2ΦΦ
+∂1∂1Φ∂1∂2Φ∂2∂1ΦΦ
+∂2∂1Φ∂1∂2Φ∂2∂2ΦΦ
+∂1∂2Φ∂2∂2Φ∂2∂1ΦΦ
+∂2∂2Φ∂2∂2Φ∂2∂2ΦΦ

=

+∂1∂1Φ∂1∂1Φ∂1∂1ΦΦ
+∂2∂1Φ∂1∂1Φ∂1∂2ΦΦ
+∂1∂2Φ∂2∂1Φ∂1∂1ΦΦ
+∂2∂2Φ∂2∂1Φ∂1∂2ΦΦ
−∂2∂2Φ∂1∂2Φ∂2∂1ΦΦ
−∂2∂1Φ∂1∂2Φ∂1∂1ΦΦ
−∂1∂2Φ∂1∂1Φ∂2∂1ΦΦ
−∂1∂1Φ∂1∂1Φ∂1∂1ΦΦ

= 0.

But where are the celebrated GDC conditions? An attentive reader may recognize,
that we encountered a very similar operator already in Section 2.1. Just by
appending one Φ, by the same manipulations we obtain a Gram determinant
condition

0 != 3! ∂[a∂aΦ∂b∂bΦ∂c]∂cΦΦ = ∂∂Φ∂∂Φ∂∂ΦΦ+2∂∂Φ∂∂Φ∂∂ΦΦ−3∂∂Φ∂∂Φ∂∂ΦΦ.

Since the first and the third term on the right side are automatically zero by
EOM, the second term must necessarily vanish in d = 2 “just” by EOM.

Essentially the same thing happens for H6(D) (see Table 5.7) when going down
from d = 5 to d = 4, or from d = 4 to d = 3. It would be interesting to understand
what happens from d = 3 to d = 2, where we lose (1−D4)(1−D6)2(1−D10), but
instead gain (1−D12) in the denominator, which is rather peculiar. As of now,
we do not have any in-depth explanation.

On the other hand, it is interesting to study when GDC do not play a role,
either when there are none or they are automatically satisfied. In the special
case of scalar fields, GDC conditions can only exist for d < r, otherwise it is not
possible to construct an operator that generates them. This is because we need to
antisymmetrize in at least d + 1 indices, but since derivatives commute and Φ do
not have any indices, the only possibility is to antisymmetrize indices of partial
derivatives standing before different fields Φ.

One would then expect some GDC relations manifesting already for d + 1 = r, but
a quick examination of Tables 5.6 and 5.7 shows otherwise. This is a consequence
of IBP relations, which admit us to move all derivatives in front of one Φ away
from it, thus we are able to find at most d indices in which we can antisymmetrize.
Therefore, GDC conditions in the presence of IBP become effective for d + 2 ≤ r.

The preceding discussion holds in general for scalar fields, but things can get more
complicated very quick. For example see the next section.
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5.3 Photons, electromagnetic field
After obtaining some experience with the scalar field, we can try to apply our
formalism to slightly more complicated case of the electromagnetic field. This
section is mainly based on the work of Chowdhury et al. [16].

It is advantageous to choose the Maxwell tensor Fab ≡ daAb = 2∂[aAb] as a
building block of the Lagrangian density instead of the vector potential Ab, since
it automatically satisfies the gauge invariance. The only essentially new thing
will be the construction of the single particle graded representation RF , and the
calculation of the corresponding graded character χ

RF
.

Calculation 5.15 (EOM and other relations). First, we must understand the
structure of the building block F••. The kinetic Lagrangian density has the
well-known form

Lkin(A•, ∂•A•) ≡ −
1
4FabF

ab,

which leads to the free equations of motion (the first set of Maxwell’s equations)

∂aFab = 0. (EOM)

Furthermore, F•• automatically satisfies the so-called Bianchi identities due to its
definition as the exterior derivative of A• (the second set of Maxwell’s equations)

3∂[aFbc] = daFbc = dadbAc = 0. (Bianchi)

One relation we will use is already a consequence of the previous two, because

∂a∂aFbc = ∂a∂aFbc + ∂a∂cFab

by (EOM)

+ ∂a∂bFca

by (EOM)

= 3∂a∂[aFbc]
by (Bianchi)====== 0.

Remark 5.16. The Hilbert series for the electromagnetic field will also include
the kinetic term (because we work with F•• instead of A•), whereas in the case of
a scalar field the kinetic term is always eliminated by IBP and EOM.

Also note that we must make some corrections by hand, namely account for
Chern-Simons topological terms of the type A ∧ F ∧ · · · ∧ F , or overcounting of
F ∧ F ∧ . . . ∧ F = d(A ∧ dA ∧ . . . ∧ dA). But more on that later.

Now we would like to build RF by repeatedly applying derivatives on F••, but we
also need to continuously utilize all possible relations to avoid any redundancies.
It is therefore useful to decompose representations we obtain to smaller pieces,
some of which will be zero by usage of the relations.

Calculation 5.17 (Direct ”manual” decomposition of ∂aFbc using indices). Using
antisymmetry of Fab we can perform the manipulations

+ ∂aFbc +
0⏟ ⏞⏞ ⏟

∂cFab +
0⏟ ⏞⏞ ⏟

∂bFca + 3∂[aFbc] + 3∂[aFbc]

3∂aF[bc] = + ∂aFbc + ∂bFac = + 2∂(aFb)c = + 2∂{aFb}c + 2
dδab∂

dFdc

+ ∂aFbc + ∂cFba − 2∂(aFc)b − 2∂{aFc}b − 2
dδac∂

dFdb,
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where {• •} denotes the traceless symmetric part, thus obtaining the decomposition

∂aF[bc] = ∂[aFbc] + 4
3∂{aF[b}c] −

4
3dδa[b∂

dFc]d,

where it is understood that first we perform the antisymmetrization [bc], and only
after that the traceless symmetrization {• •} in the corresponding indices. The
first fully antisymmetric term is zero by (Bianchi) and the contraction in the
last term is zero by (EOM).

Remark 5.18 (Young diagrams and symmetrizers). Recalling Remark 4.22, we can
efficiently describe this decomposition by usage of Young diagrams. Since the
theory is rather complicated, in the following we will work just intuitively. We
assign to every index one box, and represent their symmetries by a certain left-
and top-justified diagram. For example, to a fully symmetric traceless tensor and
fully antisymmetric tensor we assign the diagrams

T{a1a2...an} ←→ 1 2 ··· n and T[a1a2...an] ←→
1
2
...
n

.

More complicated mixed symmetries (irreducible under Sn) are represented with
diagrams of multiple rows and columns, for example

∂{aF[b}c] ←→ b a
c ,

where the Young diagram λ is always interpreted as follows:

• First perform all permutations preserving each column of λ, and sum over
them multiplied with the corresponding sign of permutation.

• Then perform all permutations preserving each row of λ and sum over them.

This is essentially the definition of a Young symmetrizer corresponding to λ.

Calculation 5.19 (Decomposition using Young diagrams). To decompose a tensor
of the form λ⊗ , we essentially make all available antisymmetric products and
all available symmetric products, which we further decompose to a traceless
symmetric product and the corresponding traces. Leaving out the traces, this
can be represented by attaching the box to all possible places of the Young
diagram λ. Thus, the decomposition performed earlier directly using indices can
be done diagrammatically as (gray boxes represent contraction)

F••

F••
⊗ ∂• =

F••

F••

∂•

Bianchi

⊕ F•• ∂•

F••
⊕ F••

∂• F••

EOM

.

Following the prescription, we easily find the decomposition of ∂a∂{bF[c}d] as

F•• ∂•

F••
⊗ ∂• =

F•• ∂•

F••

∂•

Bianchi

⊕ F•• ∂•

F•• ∂•

∂[•∂•]=0

⊕ F•• ∂• ∂•

F••
⊕ F•• ∂•

∂• F••

EOM

⊕ F•• ∂• ∂•

F••

Bianchi + EOM

.
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Calculation 5.20 (Single Particle Graded Representation RF for electromagnetic field).
Continuing further, same arguments give us that any trace is zero by (EOM) and
any antisymmetrization containing derivative is zero by (Bianchi) or symmetry
of derivatives, therefore we obtain RF of the form

RF = Span

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F[ab]
∂{a1F[a}b]

∂{a1∂a2F[a}b]
...

∂{a1 · · · ∂anF[a}b]
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ D ⊕D2 ⊕D3 ⊕· · ·⊕Dn

n⏟ ⏞⏞ ⏟
··· ⊕ · · ·

with the graded character (because Fab = daAb already contains one derivative)

χ
RF

(D; x) ≡ Dχ (x) +D2χ (x) +D3χ (x) +D4χ (x) + · · · .

Calculation 5.21 (Graded character of RF ). Casting also the SPGR RΦ for a single
scalar field (see Derivation 4.6) in the language of Young diagrams, it takes the
form (we denote the trivial representation by ⃝)

RΦ ≡ S{•}( ) =⃝⊕D ⊕D2 ⊕ · · · ⊕ Dn

n⏟ ⏞⏞ ⏟
··· ⊕ · · ·

with the corresponding character

χ
RΦ

(D; x) ≡ χ
S{•}( )(D; x) = 1 +Dχ (x) +D2χ (x) +D3χ (x) + · · · .

Using Proposition 3.53 and some reordering, we can calculate

χ
RΦ

(D; x)
(︂
Dχ (x)

)︂
=
(︂
1 +Dχ (x) +D2χ (x) +D3χ (x) + · · ·

)︂(︂
Dχ (x)

)︂
= Dχ (x) +D2χ ⊗ (x) +D3χ ⊗ (x) +D4χ ⊗ (x) + · · ·
= Dχ (x) +D2χ (x) +D3χ (x) +D4χ (x) + · · ·

+D2χ (x) +D3χ (x) +D4χ (x) + · · ·
+D2 +D3χ (x) +D4χ (x) + · · ·

=
(︂
χ

RΦ
(D; x)− 1

)︂
+Dχ

RF
(D; x) +D2χ

RΦ
(D; x),

where in the third equality the first line is the traceless symmetrized product, the
second line is the antisymmetric product, and the third line is the trace. We can
thus express the graded character of RF as

χ
RF

(D; x) =

(︂
Dχ (x)− (1 +D2)

)︂
χ

RΦ
(D; x) + 1

D

=

(︂
(D −D3)χ (x)− (1−D4)

)︂
P (D; x) + 1

D
,

where the character χ is given in Example 3.98.

To calculate the Hilbert series HF r(D) with a fixed field content F r, we proceed
exactly as in Section 5.1, just with the substitution χ

RΦ
(D; x) ↦→ χ

RF
(D; x). We

list some of the results in Table 5.22, partly reproducing and partly extending
calculations of Henning, Lu, Melia, and Murayama [1] and Chowdhury et al. [16].
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d 1
D4 HF 4(D) miscount 1

D5 H0,F 5(D)

≥ 10 2 + 3D2 + 2D4

(1−D4)(1−D6) · · ·

9 2 + 3D2 + 2D4

(1−D4)(1−D6) −D · · ·

8 2 + 3D2 + 2D4

(1−D4)(1−D6) + 1 · · ·

7
1
D + 2 + 3D2 + 2D4

(1−D4)(1−D6) − 1
D

D3+4D4+4D5+16D6+10D7+39D8+17D9+69D10+28D11

+99D12+36D13+125D14+41D15+135D16+43D17+126D18

+38D19+105D20+28D21+73D22+19D23+41D24+10D25

+19D26+2D27+5D28−2D30−D31−2D32−D33+D37

(1−D4)(1−D6)(1−D8)(1−D10)(1−D12)

6 2 + 3D2 + 2D4 +D8

(1−D4)(1−D6)

1+4D2+13D4+34D6+73D8+121D10+168D12+210D14+226D16

+213D18+182D20+131D22+79D24+42D26+16D28+D30−D32−D36

(1−D4)(1−D6)(1−D8)(1−D10)(1−D12)

5 2 + 3D2 + 2D4

(1−D4)(1−D6)

D+5D3+4D4+16D5+16D6+30D7+36D8+51D9+63D10+73D11+89D12+92D13

+110D14+103D15+117D16+103D17+108D18+91D19+88D20+71D21+59D22

+49D23+32D24+27D25+13D26+12D27+2D28+3D29−3D30−2D32−D33

(1−D4)(1−D6)(1−D8)(1−D10)(1−D12)

4 3 + 5D2 +D4 − 2D6

(1−D4)(1−D6)
2
(︂

2D4+7D6+17D8+28D10+35D12+42D14+39D16+28D18

+18D20+4D22−7D24−8D26−7D28−7D30−D32+2D34

)︂
(1−D4)(1−D6)(1−D8)(1−D10)(1−D12)

3 1 +D2 +D5 −D6

(1−D4)(1−D6)

D5+2D7+D8+D9+2D10+D11+D12

+D13+D14+2D16−D17+D25−D26

(1−D4)(1−D6)(1−D10)(1−D12)

Table 5.22: The Hilbert series for the electromagnetic field (fixed field content F 4 and F 5).

Remark 5.23 (Analysis of the highlighted terms in HF 4). In the listing of the Hilbert
series, we divided by D4 and D5, because such number of derivatives is carried
automatically by F 4 and F 5, respectively. It is peculiar that for HF 4 in d = 7,
it seems there is a “starting operator” with only 3 derivatives instead of 4. This
is exactly the already mentioned topological Chern-Simons term A ∧ F ∧ F ∧ F ,
which is a top-form that can be integrated over the space-time. The gauge
transformation A ↦→ A + du only contributes a total derivative term, because

du ∧ F ∧ F ∧ F = du ∧ dA ∧ dA ∧ dA = d(u ∧ dA ∧ dA ∧ dA).

When calculating H0,F 4 in d = 7 we also obtain an additional term of −D3, which
is outside the fraction. It reflects the fact that the Hilbert series approach does not
see A∧F ∧F ∧F itself, it was able to find operators of the type ∂nA∧F ∧F ∧F ,
that is with n > 1 derivatives distributed in some way between A and F s, because
one derivative can always be borrowed to form ∂n−1F•[•F••F••F••] up to total
derivatives. For an example of this procedure see Subsection 5.4 of [16].

Similarly, the miscount +D4 in d = 8 is caused by directly working with F instead
of A. The Hilbert series does not realize that the operator F ∧ F ∧ F ∧ F is
actually a total derivative, simply F ∧ F ∧ F ∧ F = d(A ∧ dA ∧ dA ∧ dA).
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We can immediately see that the term −D5 in d = 9 is a miscount, since it would
imply −1 independent operators of the type ∂F ∧ F ∧ F ∧ F . It has to do with
∗(F ∧ F ∧ F ∧ F ) being a co-closed one-form, because of Bianchi identities. It is
also co-exact, since analogously as before we have

∗(F ∧ F ∧ F ∧ F ) = ∗d(A ∧ F ∧ F ∧ F ) =
∂·⏟ ⏞⏞ ⏟

∗d∗−1∗(A ∧ F ∧ F ∧ F ),

but our approach does not “know” about the presence of A, so it miscalculates.

After correcting for these miscalculations, it seems we obtain the full Hilbert series
HF 4 . For the construction of the operator basis in d = 4 see [16].

Remark 5.24. The Hilbert series HF 4 in d = 3, 4 can not be brought to the
canonical form with only positive terms in the numerator (see Remark 5.11). For
further discussion on the general structure of the Hilbert series see [1].

Remark 5.25. To our knowledge, results of H0,F 5 in d = 3, 6, 7 are novel.

5.4 What’s next?
We did not even come close to exhausting all interesting EFTs, to which our
formalism could be applied. We will just list some of the possibilities:

• We only worked with one particle field at a time, but it is straightforward to
consider multiple particle fields at once (see Derivation 4.23).

• EFTs of gravity are pretty similar to the case of the electromagnetic field, see
for example [17] or [16].

• One of the first applications of the Hilbert series approach was done for the
Standard Model EFT (SMEFT) specially in d = 4 [13]. Gauge invariance was
accounted for simply by integration over the gauge group (see Derivation 4.24).
Since SMEFT also contains fermions, integration over the covering group
Spin(4) of SO(4) was necessary, but also easily realized by the isomorphism
of groups SU(2)× SU(2) ∼= Spin(4).

• From the beginning we restricted ourselves to the case of linearly realized
symmetries, but for example Chiral Perturbation Theory (χPT) does not fall
into this category. For a pretty detailed treatment see [1] and [18].
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Conclusion
In this thesis we studied operators within the context of Effective Field Theories.
Our goal was to compute the Hilbert series that encodes information about the
number of independent operators of a given type.

Recognizing possible relations between operators — Equations Of Motion (EOM),
Integration By Parts (IBP), and Gram Determinant Conditions (GDC) — led us
to the study of representation theory of compact Lie groups.

Along the way we learned a handful of things, which are not only interesting
purely from a mathematical standpoint, but also equipped us with the necessary
tools to derive the Master Formula for the Hilbert series. More precisely, we
obtained the splitting H = H0 + ∆H, where we found an explicit formula only for
the main term H0. Thankfully, the correction term ∆H typically contains only a
couple of contributions, which can be calculated by hand.

Finally, we illustrated usage of the formalism in the case of a single scalar and
electromagnetic field. Utilizing Mathematica, we successfully computed the Hilbert
series for various fixed powers of a particle field in several dimensions [14]. To our
knowledge, some of our results are novel, as we pointed out in the text.

It would be worthwhile to optimize the computations in Mathematica, in particular
with regard to the computational complexity, since going to higher dimensions or
higher number of particle fields results in enormous computation time.

The developed formalism is applicable in quite a general setting. However, we
did not have the space to adequately cover certain aspects, such as the treatment
of fermions (spinors) and the inclusion of parity and charge conjugation. While
a brief comment on the former can be found in [1] (which still warrants a more
comprehensive discussion), the latter was thoroughly analyzed in [18].

Naturally, numerous questions remain unanswered: How should we proceed in
general if the particle fields transform non-linearly under the action of the group?
Can we obtain the Hilbert series in a fully closed form? Is it possible to automate
the calculation of the correction term ∆H? There is definitely a potential for
further exploration and advancements.
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